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We are considering marked point patterns {(x;, m;)}, where {x;}
denotes the locations of objects (trees) in “window” W, and {m;}
denotes the corresponding marks (stem diameter at breast height
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» We want to construct a reasonable model for the marking
(and distribution) of points
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Data: Location of 650 trees marked by dbh in a 118.5m x 93.75m
region. The trees belong to a mixed broad-leaved forest in Hainich

in Western Thuringia (Germany), as so-called selection forest
(Plenterwald).
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» Left plot suggests inhomogeneous point distribution.
» Right plot suggests mark distribution depends on point

Intensity.
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We consider a situation where there is a relation between the
marks and the intensity of the point pattern.

Two examples where this is relevant

» Preferential sampling: One makes more measurements where
the measured value (i.e. the mark) is high, e.g. pollution, see
[Diggle et al., 2010]

» Density-dependence in plant ecology: In areas with relatively
many trees the trees tend to be small, and vice versa. See
[Myllyméaki and Penttinen, 2009].
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We consider a model with a density
1 n
w6 mi}18) = mga i]jlﬁ(x,)w(m,wx,))
x [Tl mi), (3, m)i05), (1)

i<j
w.r.t. a Poisson process on W x R.

B : W — R is the first order term.

Conditional on 3 and {x;} the marks are then distributed as

mi|Xi7 ﬁ ~ 7T(m,'|5(X,')7 9m)7

i.e. the distribution of mark m; depends on 3 evaluated at the
location x; and parameters 6,,,.

Here where ¢ : (W x M) x (W x M) — [0, 1] is the interaction
function.
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Specifically we choose

v if [ xi —x; [|[< R(mji + my)

Xi, Mj ), \Xj, Mj)) = |
o(( )(J J)) 1 otherwise,

where R > 0 controls the interaction range and 7 € [0, 1] controls
the strength of the interaction.

Interpretation:

» Circular influence zones, where the diameter of the influence
zone centred at x; is proportional to m; (DBH).

» The interaction parameter v specifies the degree of “penalty”
on each pair of overlapping influence zones.
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Regarding the mark distribution, we assume

m; — mo‘g,ﬁ(X,') ~T [C,(]; (a—i— ﬁb(xl)>] 5

where mg > 0 is the minimum mark size, and I'(k, 6) denotes the
gamma distribution with shape parameter k and scale parameter 6.
Hence

b Var[m;j — mol0, B(xi)] _ 1

m;—mg|0, B(x;)] = a and T
E[ 0l0, B(xi)] = a+ B(x) (E[m; — mq])?

(9]

The special case, where mg = 0 and a = 0 we obtain a situation
which is similar to location dependent scaling considered by
[Hahn et al., 2003].
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We perform Bayesian posterior inference for

> the first order term
» a, b, ¢ parameters of the mark distribution
» R,y the interaction parameters

Priors

» For a, b, ¢, R and v we assume uniform priors on a bounded
interval.

» For 3 we assume a non-parametric approach

Pseudo Bayesian inference for intensity-dependent point processes Kasper K. Berthelsen



As a prior on 3 we use a shot noise style prior

B(x) =Y AC(x = c),

ceC

where A > 0, C is a Poisson process on R2 and K is a kernel, i.e. a
probability density on R?. This is the prior used by

[Berthelsen and Mgller, 2008] (in the 1-dimensional case).

One alternative is a log Gaussian random field. This is the prior
considered by H&S (2008) and M&P (2009)
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For the remainder we focus of the shot-noise prior:

B(x) = AK(x - c).

ceC

For simulation purposes we replace the Poisson process C on R? by
a Poisson process C; on an extended window

W, = {x € R?:§(x, W) <A}, A>0,

where

5(A,B) = Xei\"}ces |x—yl, A BCR2

Further, we assume C, has intensity 5¢, and that IC is the density
of a bivariate normal distribution with covariance matrix o2/.
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The prior mean of 3 is [3(x)] = A\Bc. When restricting C to W,
the prior mean is (obviously) reduced. But by how much?

Let D denoted the (missed) contribution for kernels centred

outside W,:
D:/ > AK(x, c)de.
WCEC\W+
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The prior mean of 3 is [3(x)] = A\Bc. When restricting C to W,
the prior mean is (obviously) reduced. But by how much?

Let D denoted the (missed) contribution for kernels centred

outside W,:
D:/ > AK(x, c)de.
WCEC\W+

Then the expected value of D is

E[D] = \3¢ / K(x, c)dxdc
rRAW, Jw
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The prior mean of 3 is [3(x)] = A\Bc. When restricting C to W,
the prior mean is (obviously) reduced. But by how much?

Let D denoted the (missed) contribution for kernels centred

outside W,:
D:/ > AK(x, c)de.
w CEC\W+
Then the expected value of D is

E[D] = \3¢ / K(x, c)dxdc
R2AW, Jw

< )\Bc/ / k(x, c)dxdc,
R2AW, JwW

k(x,c) > K(x,c) for all (x,c) € W x (R*\ W)

is chosen to make integration easier.
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Following “B&M 2008", the function k(x, ¢) is chosen so that it is

constant on W:
5(c, W)
exp (—(C’ ) >

k(x,c) =

2mo? 202

lllustration of the 1-dimensional case:

K(x,c)
k(x, c)

A w A ¢ X
Note: The 1-dimensional case is consider by B&M (2008) where
the introduction of bounding function k is not needed.
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E[D] < A\Ge / (x, c)dxdc
RA\W,

Bl W /A [2(a+ b)/(270?) + r/0?] e /o) gy

{./ ...... A e r\|
I I
i b I
(0 A I
\ : /
\ : //
The proportion contribution missed:
E[D] /Oo 2 21 —r?/(202
—_— = 2(a+ b)/(2r02) + r/c?] e /(207 g,

Finally, A is determlned using numerical methods.
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We want to explore the posterior distribution,
(0, B|x) < 7(x|0, B)7 (0, 5), using MCMC.
For convenience we write the likelihood as

((x,m)|0, 8) = c~1(0, B)f (x|0, B),

where ¢! is the unknown normalising constant of f(y|6).
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We want to explore the posterior distribution,
(0, B|x) < 7(x|0, B)7 (0, 5), using MCMC.
For convenience we write the likelihood as

((x,m)|0, 8) = c~1(0, B)f (x|0, B),

where ¢! is the unknown normalising constant of f(y|6).

Using (conventional) Metropolis-Hastings updates involves
evaluating the Hastings ratio:

<O, B (x: 0", B (6", B)a(", 510, B)
c=1(0, B)f(x; 0, B)m(0, B)a(6, ;0. ')

Notice this involves evaluating a ratio of unknown normalising
constants.

H(0,0') =
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There are several ways of circumventing the problem of ratios
of unknown normalising constants, e.g. the approaches by
[Mgller et al., 2006] or [Murray et al., 2006].

For both of these approaches, each MCMC step involves
simulating (perfectly) a realisation of the mark point process
conditional on the proposed values of 3, v, R, a and b.

These perfect realisations be achieved by perfect sampling
(dominating coupling from the past
[Kendall and Mgller, 2000]).

For many relevant problems however, perfect sampling is
infeasible. Instead we we consider a Pseudo Bayesian
approach.
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In a pseudo Bayesian approach the likelihood is (simply) replaced
by the pseudo likelihood:

PL(0](x, m) H)\g xi, m;); (x, m))x

i=1
oxp (— R (x,m»d/dy) ,

where )y is the Papangelou conditional intensity:
)‘0((.)/7 /)7 (X, m))
= B (1B(y), 0) x [T (v ). (i mi)).-
i=1

Usually the integral in the PL-function is approximated using some
discretisation scheme.
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» A discretisation of the (location) space W is done by dividing
W into disjoint “cells” W, and associating each cell with a
dummy point

yieW,j=1,...,J.

» The integral over W is then approximated by assuming that
the integrand is constant on each cell, with a value obtained
at the corresponding dummy point.

» Notice that the usual “practical pseudo-likelihood approach”
of including the data point in the grid of dummy points
introduces bias (unless you do a clever correction).
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The integral over the markspace M = R, is
| =uisix Htp yis 1) (i, i)l

The product of interaction functions can be written as

Hso ¥j ). (xi, mi)) = o SROrD M) ()

where

n
[y =il
S iy = 1| ——— <R
(0 ) oy = 31 (1275 <
=
In other word, (**) is a decreasing step function of /, where each
step is a factor v lower than the previous step.
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In summary

n

[T (0 1). G mi)) = 50 )
i=1

is a step function.

For the dummy point y; steps happen at d; 1,d;»,...,d;, where

d;; = max {O, ’X'_RyJH — m,-}

In the following we assume that d;; < dj» < ... < dj,, and
dJ"o =0 and dj,n+1 = OQ.
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Assume F(m|6p,, 5(x)) is the distribution function corresponding
to the mark density 7(m|0,,, 5(x)).

The integral

/ 7 (18<), 0m) [T (0 1) (5, mi))el
M i=1

can now be written as

n+1
> (F(dii B()), 0m) — F(djim1: B(y5), Om)) '

i=1

The d; js are to be pre-calculated for each dummy point.
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The pseudo likelihood can now be approximated by

PL(Q) ~ H )\«9((Xi7 mi)? (X7 m))><

i=1
J
exp (= IW18(x)
j=1
n+1 .
| (P 7). 0m) = F(dji-1: (). 0m)y' ] )
i=1

With this in place we turn to an example.
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In this example W = [0, 118.5] x [0,93.7], a= 0.2, b= 2, c = 2.5,
~v=0.1 R=0.02, A =20, 8¢ = 0.003.

Data g m; vs B(x;)

JH e
(R
RO, 5 tubho
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Recall pseudo likelihood:

PL(Q) ~ H)\O((Xi’ mi)? (X’ m))><

i=1
exp ( ~ S IWl6s) ["ZH(F(dJ-,,-; ) = Fldai )
j=1 i=1

As a function of R, []7_; Mg((xi, m;), (x,m)) is a decreasing
stepfunction.
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Recall pseudo likelihood:

PL(Q) ~ H)\O((Xi’ mi)? (X’ m))><

i=1
exp ( ~ S IWl6s) ["ZH(F(dJ-,,-; ) = Fldai )
j=1 i=1

As a function of R, []7_; Mg((xi, m;), (x,m)) is a decreasing
stepfunction. On the other hand, as a function of R

n

> (F(d;ii B(x), 0m) = F(dji-1: B(x), 0m))y'
i=1
is a continuous, decreasing function.

As a result PL becomes ‘“saw toothed”.
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Posterior distribution:

True S: Posterior mean f3:
2 012
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Data: Location of 650 trees marked by dbh in a 118.5m x 93.75m
region. The trees belong to a mixed broad-leaved forest in Hainich
in Western Thuringia (Germany), as so-called selection forest

(Plenterwald).
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Posterior distribution:

Std. error
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