Detecting Fake Paintings

Robert Jacobsen

Centre for Stochastic Geometry and Advanced Bioimaging Department of Mathematical Sciences

Aalborg University

9th SSIAB Workshop, 2012

Joint work with Morten Nielsen

Outline

2 Methods

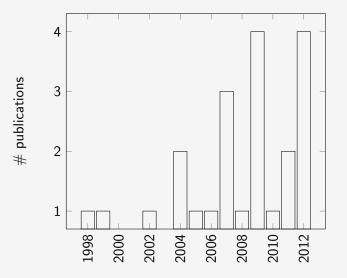
- Contourlets
- Hidden Markov Model

3 Results

Robert Jacobsen | Detecting Fake Paintings

Problem Statement: Which is Authentic?

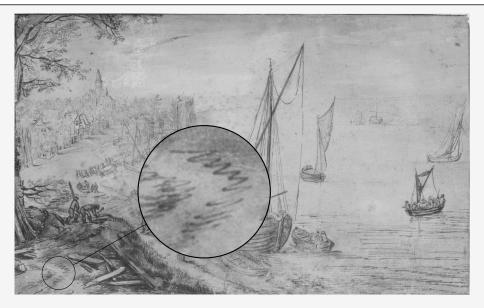
The Art Newspaper:


Break the silence over fakes

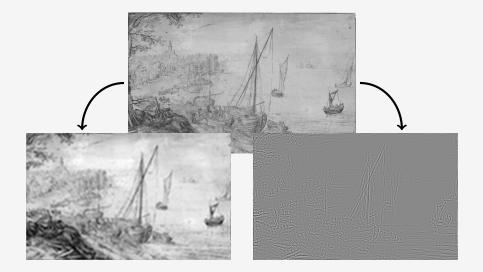
Enforced silence encourages fakes. It gives forgers the space in which they can manoeuvre

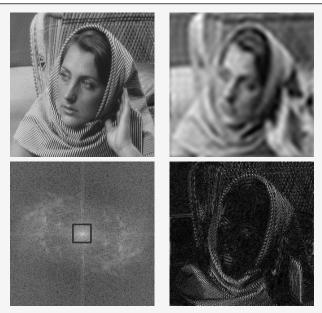
By Jack Flam. Opinion, Issue 234, April 2012 Published online: 12 April 2012

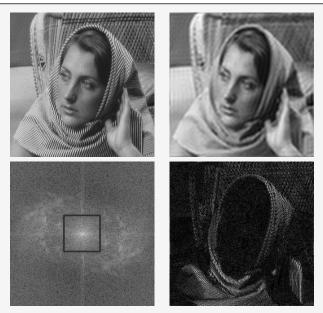
The press has recently been full of reports about forgeries. In Europe, fakes by Wolfgang Beltracchi have embarrassed a number of experts and collectors. In the US, a painting purportedly by Jackson Pollock that was sold or \$17m is he subject of a lawsuit against the now-closed Knoedler galloger and its former president Ann Freedman. This "Pollock", moreover, seems to be only the tip of the iceberg, since it appears to belong to a surprisingly large collection of pictures supposedly painted by leading abstract expressionist artists. This collection was allegedly


Interest in this Subject

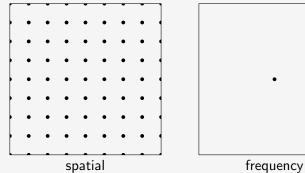
Brushstrokes

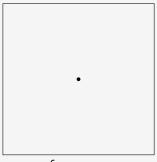

Brushstrokes


Divide and Conquer

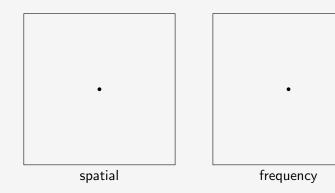

Divide and Conquer

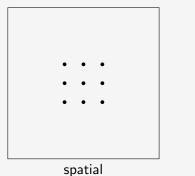
$\mathsf{Details} = \mathsf{High} \; \mathsf{Frequencies}$

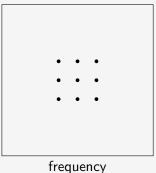



$\mathsf{Details} = \mathsf{High} \; \mathsf{Frequencies}$

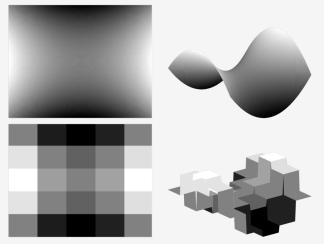
Fourier Fails

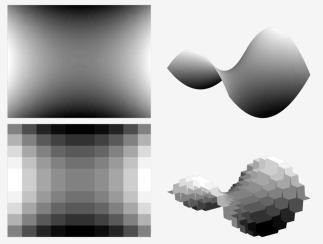

- Fourier: One frequency, lots of pixels
- Heisenberg: One frequency, one pixel is impossible
- Realistic: Few frequencies, few pixels.


Fourier Fails

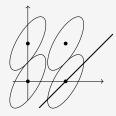

- Fourier: One frequency, lots of pixels
- Heisenberg: One frequency, one pixel is impossible
- Realistic: Few frequencies, few pixels.

Fourier Fails


- Fourier: One frequency, lots of pixels
- Heisenberg: One frequency, one pixel is impossible
- Realistic: Few frequencies, few pixels.

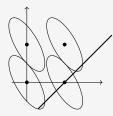

Multiresolution Analysis: Digital image

digital image =
$$\sum_{k \in \mathbb{Z}^2} a_k \phi(x - k), \quad \phi(x) = \mathbb{1}_{[0,1)^2}(x).$$

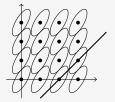

Multiresolution Analysis: Digital image

digital image =
$$\sum_{k \in \mathbb{Z}^2} a_k \phi(2x - k), \quad \phi(2x) = \mathbb{1}_{[0,1/2)^2}(x).$$

Multiresolution Analysis: Contourlets


$$\mathsf{digital} \; \mathsf{image} = \sum_{d=0}^{D} \sum_{k \in \mathbb{Z}^2} \mathsf{a}_k \psi_d(\mathsf{x}-k).$$

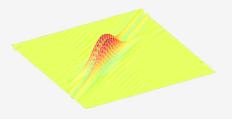
Multiresolution Analysis: Contourlets

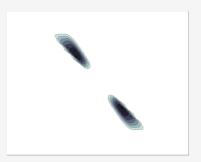

digital image
$$=\sum_{d=0}^{D}\sum_{k\in\mathbb{Z}^2}a_k\psi_d(x-k).$$

Multiresolution Analysis: Contourlets

digital image =
$$\sum_{d=0}^{D} \sum_{k \in \mathbb{Z}^2} a_k \psi_d (2x - k).$$

^a (4,1)	a(4,2)	^a (4,3)	^a (4,4)
●		●	●
^a (3,1)	a(3,2)	^a (3,3)	^a (3,4)
●		●	●
^a (2,1)	^a (2,2)	^a (2,3)	a(2,4)
●	●	●	
a(1,1)	^a (1,2)	a(1,3)	^a (1,4)
●	●		●

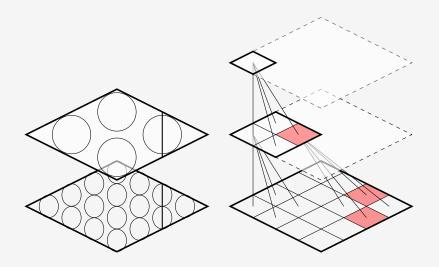

11 / 15

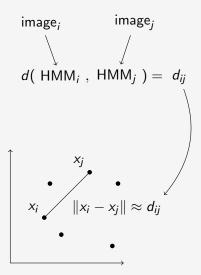

Contourlet properties

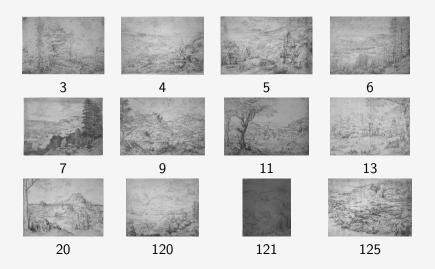
Directionality

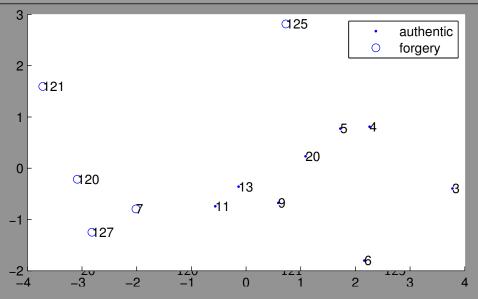
Frequency selection

Made for digital images


Contourlet Transform


Contourlet Transform


Hidden Markov Model


Distances: Multidimensional Scaling

Results: Pieter Bruegel the Elder

Results: Pieter Bruegel the Elder

