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Motivation

I Study of the influence of covariates on the occurrence of fish
in the inland reservoir.

I Study the interaction of the fish on the small scale.

Figure: Three small parts of the fish positions.



Model

• Homogeneous Neyman-Scott process

κ - The intensity of the Poisson point process which forms the
cluster centers.

α - The mean number of point per cluster.

ω - The size of the clusters. k(·, ω) is a probability density function
parameterized by ω which determines the spread of daughter
points around cluster center.

If k(·, ω) is symmetric normal distribution then the process is
called modified Thomas process.



Inhomogeneity
• Inhomogeneous Neyman-Scott processes.

Figure: Three different types of inhomogeneities. Left : the cluster
centers are thinned, center : the daughter points are thinned, right : the
scale depends on the location



Inhomogeneity
• The clusters correspond to fish families or shoals which keep
together and which are assumed to be homogeneous under similar
environmental conditions.

• Therefore the inhomogenity is modeled by inhomogeneous cluster
centers.

• Thus C the process of cluster centers is an inhomogeneous
Poisson process with intenzity function

ρβ(u) = κ exp(z(u)βT ), u ∈ R
2, (1)

where z = (z1, . . . , zk) is the covariate vector and β = (β1, . . . , βk)
is a regression parameter.

• The intenzity of the Neyman-Scott point process with
inhomogeneous cluster centers is then

λ(u) = αE
∑

c∈C

k(u−c , ω) = α

∫
k(u−c , ω)ρβ(c)dc , u ∈ R

2. (2)



Covariates

Figure: Four covariates, depth of the reservoir, distance from the bank,
steepness of the bottom and light radiation. (Lighter colors correspond to
the higher values.)



Methods of parametr estimation

1. likelihood-based inference - computationally very demanding
and it is not straightforward to implement.

2. Two-step estimation methods

2.1 First step : inhomogenity parameters are estimated by Poisson
log likelihood function.

2.2 Second step : clustering parameters are estimated.

2.2.1 Minimum contrast method, where the contrast is measured on

the K-function which is modified to be homogeneous under

our model.

2.2.2 Composite likelihood method.

2.2.3 Bayesian method.



First step

• We approximate the intensity of X by

ρβ(u) = exp(z(u)β
T
), u ∈ R

2, (3)

where z(u) = (1, z1, . . . , zk) and β = (log(ακ), β1, . . . , βk).

• This approximation is intuitively justified if the range of
interaction among the points is small with respect to range of
changes of spatial covariates z(u).

• The Poisson log likelihood function is used to estimate β.

• It means, that we maximize the score function

l(β) =
∑

u∈X∩W

z(u)β
T
−

∫

W

exp(z(u)β
T
)du (4)

Here W is the observation window.



Minimum contrast method

• The second order product density of the Neyman-Scott point
process with inhomogeneous cluster centers is

ρ(2)(u, v) = λ(u)λ(v)+α2

∫
k(u−c , ω)k(v−c , ω)ρβ(c)dc , u, v ∈ R

2,

(5)

• The pair correlation function is

g(u, v) = 1+

∫
k(u − c , ω)k(v − c , ω)ρβ(c)dc∫

k(u − c , ω)ρβ(c)dc
∫
k(v − c , ω)ρβ(c)dc

, u, v ∈ R
2,

(6)



Minimum contrast method

The g(u, v) can be approximated by

g(u, v) ∼ 1 +
ρβ(

u+v
2 )

ρβ(u)ρβ(v)

∫
k(u − c , ω)k(v − c , ω)dc , u, v ∈ R

2.

(7)
The function h(u, v , ω) =

∫
k(u − c , ω)k(v − c , ω)dc depends only

on the difference u − v and it will be our homogeneous
characteristic (h(u, v , ω) = h(v − u, ω)).

Integrate the h(t, ω) similarly like in the definition of K function

H(r , ω) =

∫

‖t‖≤r

h(t, ω)dt, r ≥ 0. (8)



Minimum contrast method

The H(r , ω) can be computed, for example for Thomas process

H(r , ω) = 1− exp(−r2

4ω2 ).

On the base of approximation 7 we have

∫

‖u−v‖≤r

(g(u, v)− 1)
ρβ(u)ρβ(v)

ρβ(
u+v
2 )

dudv ∼ H(r , ω). (9)

Since ρβ(u) = ρβ(u)/α and ρβ(u) is estimated in the first step,
the left hand side of 9 can be estimated by

6=∑

x ,y∈X

I‖x−y‖≤r

αρβ(
x+y
2 )|W ∩Wx−y |

−

∫

‖u−v‖≤r

ρβ(u)ρβ(v)

αρβ(
u+v
2 )

. (10)



Minimum contrast method

The unknown parameter α can be given out and we get that the
homogeneous characteristic αH(r , ω) can be estimated by

̂αH(r , ω) =

6=∑

x ,y∈X

I‖x−y‖≤r

ρβ(
x+y
2 )|W ∩Wx−y |

−

∫

‖u−v‖≤r

ρβ(u)ρβ(v)

ρβ(
u+v
2 )

.

(11)
Note here that the second term is not estimated from the points of
X , but it can be numerically integrated from estimated ρβ(u).

The estimates of α and ω are then obtained by minimizing

∫ Ru

Rl

( ̂αH(r , ω)− αH(r , ω))2dr ,

where Rl and Ru are user specified constants.



Composite likelihood method

The estimate of the interaction parameters is obtained by
maximizing the composite likelihood, which is defined by :

CL(α, ω) =
∑

x 6=y∈X∩W ,‖x−y‖<R

[log ρ(2)(x − y)−

− log

(∫

W

∫

W

ρ(2)(u − v)I (‖u − v‖ < R)dudv

)
],

here R is the user specified constant. And the intensity function
estimated in the first step is plug in the second order product
density ρ(2) computed for our model in Formula 5.

Similarly like composite likelihood it possible to use Palm
likelihood. Since those two method seems to get similar results, we
worked only with composite likelihood (Prokešová & Jensen 2011) .



Bayesian approach

• C is the inhomogeneous point process of cluster centers with the
intensity ρβ/α,

• p(C |α) is the probability density of the point process C under the
knowledge of α with respect to homogeneous Poisson point process

• and p(X |C , α, ω) is the probability density of the point process
X with respect to homogeneous Poisson point process under the
knowledge of C and all parameters.

p(X |C , α, ω) = exp(|W | −

∫

W

λ̃(u)du)
∏

x∈X

λ̃(x), (12)

here λ̃(u) = α
∑

c∈C k(u − c , ω).



Bayesian approach

The joint posterior distribution of the of the process X and the
parameters is then

p(C , α, ω|X ) ∝ p(X |C , α, ω)p(C |α)p(α)p(ω). (13)

Here p(α) and p(ω) denote the probability densities of priors.

• Two different updates of MCMC are needed.

1) Update for centers C - Birth-Death-Move algorithm.

2) Update for parameters of interest α, ω - Metropolis-Hastings
algorithm.

The Bayesian point estimates of α and ω are then the expected
values of the posterior distribution.



Simulation study
inhomogeneous intensities - smooth and wavy intensity. Both
intensities are given as a combination of two covariates.

Figure: The covariates (first and second column), the intensity (third
column).



Simulation study
Parameters :

κ = 80, α = 2.5, ω = 0.02 κ = 80, α = 2.5, ω = 0.04

κ = 26.66, α = 7.5, ω = 0.02 κ = 26.66, α = 7.5, ω = 0.04
This gives us in mean 334 points for first intensity and 304 points
for second intensity.

We performed 100 simulations for all 8 combinations of parameters

Figure: Realizations for two considered inhomogeneities.



Intensity smooth smooth smooth smooth wavy wavy wavy wavy
κα 200 200 200 200 200 200 200 200
β1 1 1 1 1 0.4 0.4 0.4 0.4
β2 -2 -2 -2 -2 0.6 0.6 0.6 0.6
κ 80 80 26.66 26.66 80 80 26.66 26.66
α 2.5 2.5 7.5 7.5 2.5 2.5 7.5 7.5
ω 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04

First step
Mean κ̂α 216.7 198.7 224.6 221.7 202.7 209.1 203.1 211.5
SD κ̂α 93.34 70.81 137.0 135.2 31.61 32.83 48.83 46.75
MSE κ̂α 8911 4961 19214 18608 997.5 1149 2372 2300

Mean β̂1 0.984 1.110 1.064 1.067 0.391 0.344 0.368 0.350

SD β̂1 0.572 0.612 1.028 0.962 0.141 0.139 0.224 0.182

MSE β̂1 0.324 0.383 1.053 0.922 0.020 0.022 0.051 0.035

Mean β̂2 -2.022 -2.271 -2.065 -2.115 0.545 0.504 0.582 0.493

SD β̂2 0.997 1.216 1.886 1.774 0.162 0.141 0.257 0.217

MSE β̂2 0.986 1.537 3.529 3.132 0.029 0.029 0.050 0.058
Min. Contrast

Mean α̂ 2.497 3.763 6.949 5.845 2.230 3.702 7.304 5.745
SD α̂ 1.125 2.227 2.123 3.857 0.830 2.378 2.320 3.928
MSE α̂ 1.253 6.503 4.770 17.48 0.756 7.045 5.374 18.37
Mean ω̂ 0.180 0.161 0.058 0.184 0.170 0.238 0.054 0.183
SD ω̂ 0.333 0.297 0.189 0.312 0.330 0.355 0.185 0.296

1000 × MSE ω̂ 135.5 102.2 37.1 117.3 130.2 163.7 34.98 107.2
Composite Lik.

Mean α̂ 3.090 6.783 8.613 7.132 3.350 5.306 8.220 7.500
SD α̂ 1.839 4.261 2.831 4.463 2.418 3.901 4.223 4.320
MSE α̂ 3.695 36.34 9.173 19.86 6.396 22.95 17.08 18.00
Mean ω̂ 0.0213 0.0643 0.0194 0.0398 0.0215 0.066 0.0187 0.0417
SD ω̂ 0.0057 0.0189 0.0024 0.0126 0.0062 0.019 0.0026 0.011

1000 × MSE ω̂ 0.035 0.948 0.006 0.159 0.040 1.064 0.008 0.133
Bayesian
Mean α̂ 2.724 4.168 7.769 7.679 2.697 3.556 7.815 7.578
SD α̂ 0.513 2.175 0.815 1.786 0.387 1.234 0.930 1.505
MSE α̂ 0.310 7.471 0.730 3.191 0.185 2.622 0.903 2.190
Mean ω̂ 0.0207 0.0494 0.0201 0.398 0.0200 0.0447 0.0204 0.0401
SD ω̂ 0.0023 0.0146 0.0010 0.0045 0.0016 0.0078 0.0018 0.0029

1000 × MSE ω̂ 0.005 0.300 0.001 0.021 0.0025 0.0829 0.003 0.008



The results of the simulation study First step

1. The estimation of inhomogeneity parameters perform well in
all cases.

2. The results of the first step of the estimation procedure is
better for less clustered processes.

3. The wavy inhomogeneity structure does not bring (with
respect to smooth inhomogeneity structure) deterioration of
the performance of estimation of inhomogeneity parameters
neither the interaction parameters.

4. Thus the assumption, that the range of interaction is small
with respect to the range of changes of covariates, is not
completely crucial.



The results of the simulation study Second step

1. The Bayesian method performs best.

2. But this method is rather computationally demanding with
many implementation pitfalls.

3. For the two remaining simpler methods, the minimum
contrast method performs better for the estimation of α and
the composite likelihood method performs better for the
estimation of ω.

4. But both simpler methods are quite sensitive for the choice of
tuning parameters.



Fish spatial distribution

• 4351 fish recorded in the representative middle part of the
reservoir.

• The fish were recorded along the trace of the boat, which was 12
km long.

• The fish were recorded in the distance 10 to 20 meters from the
boat and in the depth 1 to 1.75 meters.



Covariates

Figure: Four covariates, depth of the reservoir, distance from the bank,
steepness of the bottom and light radiation. (Lighter colors correspond to
the higher values.)



Estimated inhomogeneity intensity function

The estimated parameters with their 95% confidence intervals.
Parameters κα Depth Distance to bank Steepness Radiation α ω

Estimates 0.0304 0.0039 0.0038 - 0.0147 0.0574 4.57 3.76
Standard dev. 0.0515 0.0108 0.0021 0.0163 0.0818 0.41 0.21
Lower bound 0.0181 - 0.0407 - 0.0033 - 0.0649 - 0.05
Upper bound 0.2214 0.0127 0.0058 - 0.0056 0.015



Testing complete spatial randomness

• The method of (Brix et. al. 2001) was chosen since it tests only
the Poisson assumption and does not test the goodness of fit of
the inhomogeneous function.

• The resulted p-value of this test is less than 10−6.

• Thus we clearly reject the hypothesis of independent structuring
of the fish in the reservoir.

• Since the shorter nearest-neighbor distances appear more often
than it should be under the Poisson hypothesis, the clustering
structure of the fish is evident.



Estimation of interaction parameters

• Since the Bayesian method is the most accurate method, we use
it.

• Finally we performed the parametrical bootstrap to obtain the
confidence intervals of the estimated inhomogeneous parameters.
We simulated 250 inhomogeneous Thomas processes with
estimated parameters.



Conclusions

• The properties of the two step estimation procedures for the
Neymann-Scot process with inhomogeneous cluster centers were
studied.

• Since we use some approximation of the first order intenzity
function in the first step, we have to rely on the simulation study
only.

• The first step, the estimation of inhomogeneity parameters
performs reasonably well.

• For the second step we introduced 3 estimation procedures.

• The Bayesian method reveals the best and the most stable
results in our simulation study.

• Therefore we chose this method and applied it to fisheries data
set, which was the motivation of this study.



Conclusions for real data

• The clustering structure of fish were proven.

• The mean number of fish in the cluster was estimated to 4.57.

• The steepness of the ground is the only significant covariate.


