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Spatiotemporal point processes in propagation models

Object of interest: species spreading using small particles (spores,
pollens, seeds...)
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Sources of particles generate a spatially structured rain of particles

> rain of particles — spatial point process

» spatial structure — inhomogeneous intensity of the process



Intensity of the spatial point process formed by the deposit
locations of the particles

The intensity is a convolution between
» the source process (spatial pattern and strengths) and

> a parametric dispersal kernel




Simulation of an epidemics




Dispersal kernel

Dispersal kernel: probability density function of the deposit
location of a particle released at the origin

The shape of the kernel is a major topic in dispersal studies: it
determines

> the propagation speed
> the spatial structure of the population

» the genetic structure of the population



Main characteristics of dispersal kernels:

» long distance dispersal (Minogue, 1989)
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Noyau exponentiel Noyau de Pareto

» non-monotonicity (Stoyan and Wagner, 2001)
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Observation of secondary foci (clusters) in real epidemics

Epidemics of yellow rust of wheat in an experimental field (1.
Sache)




» Classical justifications for patterns with multiple foci:
» long distance dispersal
> spatial heterogeneity
» super-spreaders (a few individuals which infects many
susceptible individuals)



» Classical justifications for patterns with multiple foci:

» long distance dispersal
> spatial heterogeneity
» super-spreaders (a few individuals which infects many

susceptible individuals)

» An other justification to be investigated: Group dispersal

» Groups of particles are released due to wind gusts
» Particles of any group are transported in an expanding air

volume
» At a given stopping time, particles of any group are projected

to the ground
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Group Dispersal Model (GDM): Spatial case

Deposit equation for particles:

A single point source of particles located at the origin of R?
J: number of groups of particles released by the source

Nj: number of particles in group j € {1,...,J}

Xin: deposit location of the nth particle of group j satisfying

Xjn = Xj + Bjn(v[|Xl]), (1)

where

Xj: final location of the center of group J,

Bjn: Brownian motion describing the relative movement of the nth
particle in group j with respect to the group center

v: positive parameter



Assumptions about the deposit equation

» The random variables J, N;, X; and the random processes
{Bjn : n=1,...,N;} are mutually independent

» Number of groups: J ~ Poisson(\)

» Number of particles in group j: Nj ~indep Pp.02(")

> Group center location: X; ~indep fx; ()
(features of fx;: decrease at the origin is more or less steep,
tail more or less heavy, shape more or less anisotropic...)

» The Brownian motions Bj, are centered, independent and
with independent components
They are stopped at time t = v||Xj]|.
Then,
Bin(V11X11) ~indep N(O. V]| Xi[11)



Dispersal from a single source
» Simulations: (Interpretation: Cox process or Neyman-Scott
with double nonstationarity — in the center pattern and the
offspring diffusion
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Dispersal from a single source

» Simulations: (Interpretation: Cox process or Neyman-Scott
with double nonstationarity — in the center pattern and the
offspring diffusion
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» Marginal probability density function (dispersal kernel):

5,00 = [ g (x Iy = [0, (0)dy.

The particles are n.i.i.d. from this p.d.f. while in the classical
dispersal models the particles are i.i.d. from a dispersal kernel
which may be of the form of fx, or fx,



Discrepancies from independent dispersal

The GDM is compared with two independent dispersal models
(IDM)
» IDM1: the number of particles in each group is assumed to be
one. Thus, particles are independently drawn under the p.d.f.
X0
» IDM2: the number of particles in each group is assumed to be
one and the Brownian motions are deleted (i.e. v =0). Thus,
particles are independently drawn under the p.d.f. fx;.



Moments

X: Deposit location of a particle
Q(x + dx): Count of points in x + dx
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GDM: larger variance of Q(x + dx) and positive covariance
(decreasing with distance)
— clusters (even with = 1)

We expect multiple foci in the spatio-temporel case



Group dispersal model:

GDM
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Simulation study of the number of foci:

Definition
A 4-focus is a set of cells (from a regular grid) which are connected
and whose intensity of points is larger than §
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Farthest particle (link with propagation speed)
Definition
The maximum dispersal distance during one generation is

R™* = max{Rj, : j € J,n € N;}

where R, = || Xjn||
d={1,...,J} if J > 0 and the empty set otherwise
N; ={1,...,N;} if N; > 0 and the empty set otherwise

By convention, if no particle is released (J = 0 or N; = 0 for all j),
then RM# =0
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R™* = max{Rj, : j € J,n € N;}

Under the GDM and IDMs, the distribution of the distance
between the origin and the furthest deposited propagule is
zero-inflated and satisfies:

P(R™ =0) = exp [)\{pWTQ (0) — 1}]
frmax(r) = )\f,;»Jmax(r) exp{)\(Fijax(r) - 1)}, Vr >0,

where frmax is the p.d.f. of the distance R = max{Rj, : n € N;}
between the origin and the furthest deposited propagule of group J,
and Fijax is the corresponding cumulative distribution function

(Frpoe(r) = PR = 0) + J; fgpox(u)ds).

— Distribution of RJ!"""X ?



Under the IDMs, N; =1 for all j € J and, consequently,
Pu,02(0) = 0 and

frma< (r) = fr,,(r)
f027T rfx, ((rcos @, rsin@))dd  for the IDM1
JE rfx((rcos@, rsin))dd  for the IDM2.



Under the GDM, the distribution of ijax is zero-inflated and
satisfies:

P(R™* = 0) = py,»2(0)

fRJgnax(r) = /IR fR.max‘Xj(r | X)fXJ(X)dX

—quu,gz 7) / e (7 | X)Fry i (1 | )9 g (),

where fg. |x; is the conditional distribution of R;, given X;
satisfying
2

fRax:(r | x) = 2r/ hy(u, x)ha(r? — u, x)du,
0

fi(\/U?X) + f,-(—\/ﬂ,x) .
NG , Vie{l,2},
(v — x(0)2

1
filvix) = ———exp [~ X e (1,2),
W) = p< 2VI\XH> .2}

x = (x(U, x )andFR|X rlx)= fo Rinl X; (s | x)ds

hi(u,x) =




Theorem

Consider a GDM and an IDM1 characterized by the same
parameter values except that E(J) = X\, E(N;) = ji and

V(N;) = o2 for the GDM, and E(J) = \ji, E(N;) = 1 and
V(N;) = 0 for the IDM1 (= same marginal dispersal kernel).
Then, for all r > 0 the probability P(R™®* > r) is lower for the
GDM than for the IDM1.

Theorem

Consider an IDM1 and an IDM2 characterized by the same
parameter values except that v > 0 for the IDM1 and v = 0 for
the IDM?2.

Then, for all r > 0 the probability P(R™®* > r) is lower for the
IDM?2 than for the IDM1.

Interpretation:
The population of particles are less concentrated in
probability for the IDM1 than for the GDM and the IDM2
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Conclusion

» With group dispersal, one can generate multiple foci whereas
the particles are more concentrated



Perspectives

» Toward analytic results about the farthest particle in the
spatio-temporal case
(— speed of propagation of epidemics)

» Inference (with Tomas Mrkvicka and Eyoub Sidi)

» Alternative representations of group dispersal (Cylinder-based
models, with Tomas Mrkvicka and Antti Penttinen)
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» Study of the evolutionary dynamics between group dispersal
and independent dispersal
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