Planar Markov fields

Marie-Colette van Lieshout

colette@cwi.nl

CWiI
PO. Box 94079, NL-1090 GB Amsterdam
The Netherlands

Planar Markov fields - p. 1/1



A Arak-Surgailis polygonal Markov fields

form a coloured mosaic by

isofropic Poisson line process skeleton for drawing polygonal
confours;

Nno line can be used more than once; mMany mosaics can be drawn
on the same skeleton;

adjacent polygons have different colours;

probability distribution defined by Hamilfonian chosen so that
asic properties of the Poisson line process carry over,
dynamic representation in terms of particle system holds.
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Background and aim

In (9), Schreiber and | infroduced a class of binary random fields that
can be understood as discrete versions of the two-colour Arak process.

Godl

extend the consfruction to
allow for an arbitrary number of colours;

relax the assumption that no polygons of the same colour can be
joined by corners only;

have a dynamical representation that can be used for sampling;

satisfy a spatial Markov property.
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Regular linear tessellations

are countable families T of straight lines in R? such that
no three lines of 7 infersect at one point;

a bounded subset of R? can be hit by at most a finite number of
lines from 7.

Fixed acfivity parameters m; € (0, 1) are ascribed to eachl e 7.

Examples
Poisson line process;

regular planar lattice.
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B Polygonal configuration

D c R? bounded, open and convex;

0D contains no nodes, that is, no intersections of fwo lines of 7;
foralll € T, card(lNoD) = 2;

J={1,...,k} k>2.

I'p(T) is the set of all planar graphs ~ in D U 8D with faces coloured by
labels in J such that

all edges of ~ lie on the lines of 7;

all vertfices of v in D are of degree 2, 3, or 4;
all vertices of v on 9D, are of degree 1;

NO adjacent regions share the same colour.

I'p(7T) consists of all planar graphs v in D = D U D arising as interfaces
between differently coloured regions in 4 € I'p (7).

m I« O >
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Discrete polygonal field

Az, ., with Hamiltonian Hp : I'n(7) — R U {+ 0} is defined by

exp [—Hp ()] HeEE*(’y) Tile]
Z[Hp] ’

P(AHD :’3/) =

where Z[Hp] is the partition function, E* denotes primary edges, i.e.
maximal open connected collinear line segments consisting of multiple
edges (due to T- or X-nodes), and [[e] € 7 is the line containing e.

For a special choice of 'H, the model has remarkable properties. Fix
k > 2,0y € [0,1]. SGTO&X =1—ay and

Q —1 1—k_2a : € = + Q
=39 k—1 )7 T k-1 k-1 "
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Consistent polygonal fields

Define Hamilfonian &5 (%) by

= —Nv(y)logav — Nr(y)log((k — 1)ar) — Nx(v)log((k — 1)ax)
+ card(E(vy))log(k —1)

— Z Z log(1 —em;) + Z log (1 — kOé_V17T117T12>

e€EE(y) €T, lxe n(ly,la)Er

where N(V), N(T'), N(X) are the number of V-, T-, and X-nodes,

zlopl=k [ Q+m) ] (1—%%%)_1.

leT, IND#( n(l1,l2)ED

Theorem
As, ND' =* A, for bounded open convex D' C D.

m I« O >
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M Proof: Dynamic representation

Interpret
(t,y) € D

as: y is the 1D position of a particle atf fime ¢.
W.l.o.g. assume no line of 7 is parallel to the spatial axis.

Birth sites

at each node n(l1,l2) € TN D w.p. aym, 7, /(k— 1) two parficles are
born, moving forward in time along I; and > unless some previously
born particle hits the node;

at each enfry point in(1, D) of lines ! € 7 into D, w.p. m; /(1 + m;) O
single particle is born, moving forward in time along (.

Colours are chosen uniformly conditional on not clashing with the
colour just prior (left) fo the birth.

m I« O >
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Dynamic representation: Collisions

of fwo particles at some moment ¢ with (¢,y) = n(l;,l;) € D

a if the colours above and below are identical, w.p. ay both particles
die, w.p. ax both survive and a new colour is chosen w.p. 1/(k — 1)
for each admissible colour;

b if the colours above and below clash, w.p. a7, each of the two
particles survives while the other dies; w.p. 1 — 2o, boOth survive and
a new colour is chosen w.p. 1/(k — 2) for each admissible colour.

Note: a collision prevents a birth at that node.

m I« O >
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N Dynamic representation: Updates af nodes

Whenever a particle moving along I; € 7 reaches n(l;,l;), if
a will change velocity to contfinue along i; w.p. av i, /(k — 1),

b splits info fwo particles moving along I; and I; w.p. (k —2)arm, /(k—1);
a new colour is chosen uniformly from the k — 2 possibilities;

¢ keeps moving along I; otherwise (w.p. 1 — em;).

These dynamics define a random coloured polygonal configuration that
can be shown to coincide in distribution with A . Consistency follows.

m I« O >
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Further properfies

For As ,,, the following hold.

Linear sections: For any line [ containing no nodes of 7, A% ar
coincides in law with A+ NI, where each [* € 7 belongs to A+ w.p.

—+— independently of others.

Spatial Markov: For a piecewise smooth simple closed curve § C R
contfaining no nodes of 7, tThe condifional distribution in the interior
of 8 depends on the exterior configuration only through the
intersection points and intersection directions of § with the edges of
the polygonal field and through the colouring of the field along 6.

Notes
properties resemble those of continuous Arak-Surgailis fields;

the spatial Markov property implies the local Markov property.
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‘ Examples

T consists of tilted line bundles with density 0.07 on [—128, 128]* and
m=1/2foralll e T.
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Figure 1. Tilted line bundle.

Figure 2: Samples of As,, with k = 3, ay = 0 (left), ay = 1/2 (centre) and
oy = 1 (”ghT) I« O >l
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™ Birth—death dynamics for consistent fields

For k = 2, ay = 1 (Schreiber and Van Lieshout, 2010)
for each admissible ~, there are only two colourings;
all particles die upon collision.

For k > 2, these facts no longer apply.

For k > 2, use continuous fime dynamics with three types of updates:
add a particle birth;
delete a (discarded) particle birth at rate 1;
recolour the graph by Knuth shuffling atf rate = > 0.

To find the birth rate, solve the balance equations to obfain rate
Cﬂ-llﬂ-lz/(l - C7T517T52)

with ¢ = av /(k — 1) for vacant infernal node n(l:,12). If n(l1,l2) is hit by
some previously born parficle, the birth is discarded. The boundary birth

WGT@ atin(l, D) is 7.
1< O >

Planar Markov fields — p. 13/1



N Birth—death dynamics for consistent fields (ctd)

The trajectories of particle(s) emitted at a birth update and their
collisions are chosen in accordance with the dynamic representation,

re-using existing trajectories whenever possible. A dual reasoning is
applied to deaths.

N

Figure 3: Boundary birth update: Old configuration (left), new configura-
fion (right). Line colour corresponds to label below the line.

\CWL_

I O >
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‘ Accepft-reject sampler

for As -+ accepts a new state 4 with probability
min (1, exp [H(§) — H(¥)]) -
Example

HA) =B|— > > log(l—em)

e€E(y)1l€T, lxe

For 3 > 0, there tend to be more large, fat cells; for 5 < 0 more thin,
elongated shapes.

Figure 4: Samples of Ag, 1+ with ay = 1/2 and 3 = —1/4 (left) and
W = 1/4 (right) for - = 10 and time 15, 000 (over five million updates).

I O >
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B Ssummary

We presented a class of multi-colour discrete random fields on finite
graphs

inspired by consistent polygonal Markov fields;

that have an explicit partition function;

that generalise the binary fields considered before;
cover classic Gibls fields;

and have a dynamic representation on which new simulation
algorithms may be based.

In contrast to the continuum, collinear edges are allowed.

The fixed regular linear tessellation may be replaced by a random
one (e.Q. Poisson line process) or be determined by data (image
segmentation).
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