# Planar Markov fields

Marie-Colette van Lieshout

colette@cwi.nl

CWI P.O. Box 94079, NL-1090 GB Amsterdam The Netherlands





#### Arak-Surgailis polygonal Markov fields

#### form a coloured mosaic by

- isotropic Poisson line process skeleton for drawing polygonal contours;
- no line can be used more than once; many mosaics can be drawn on the same skeleton;
- adjacent polygons have different colours;
- probability distribution defined by Hamiltonian chosen so that
  - basic properties of the Poisson line process carry over,
  - dynamic representation in terms of particle system holds.







#### Background and aim

In (9), Schreiber and I introduced a class of binary random fields that can be understood as discrete versions of the two-colour Arak process.

#### Goal

extend the construction to

- allow for an arbitrary number of colours;
- relax the assumption that no polygons of the same colour can be joined by corners only;
- have a dynamical representation that can be used for sampling;
- satisfy a spatial Markov property.





#### Regular linear tessellations

are countable families  $\mathcal T$  of straight lines in  $\mathbb R^2$  such that

- no three lines of T intersect at one point;
- a bounded subset of  $\mathbb{R}^2$  can be hit by at most a finite number of lines from  $\mathcal{T}$ .

Fixed activity parameters  $\pi_l \in (0,1)$  are ascribed to each  $l \in \mathcal{T}$ .

#### **Examples**

- Poisson line process;
- regular planar lattice.





## Polygonal configuration

- $D \subset \mathbb{R}^2$  bounded, open and convex;
- $\partial D$  contains no nodes, that is, no intersections of two lines of  $\mathcal{T}$ ;
- for all  $l \in \mathcal{T}$ ,  $\operatorname{card}(l \cap \partial D) = 2$ ;
- $J = \{1, \dots, k\}, k \ge 2.$

 $\hat{\Gamma}_D(\mathcal{T})$  is the set of all planar graphs  $\gamma$  in  $D \cup \partial D$  with faces coloured by labels in J such that

- all edges of  $\gamma$  lie on the lines of  $\mathcal{T}$ ;
- all vertices of  $\gamma$  in D are of degree 2, 3, or 4;
- all vertices of  $\gamma$  on  $\partial D$ , are of degree 1;
- no adjacent regions share the same colour.

 $\Gamma_D(\mathcal{T})$  consists of all planar graphs  $\gamma$  in  $\overline{D} = D \cup \partial D$  arising as interfaces between differently coloured regions in  $\hat{\gamma} \in \hat{\Gamma}_D(\mathcal{T})$ .



# Discrete polygonal field

 $\hat{\mathcal{A}}_{\mathcal{H}_D}$  with **Hamiltonian**  $\mathcal{H}_D:\hat{\Gamma}_D(\mathcal{T})\mapsto\mathbb{R}\cup\{+\infty\}$  is defined by

$$\mathbb{P}\left(\hat{\mathcal{A}}_{\mathcal{H}_D} = \hat{\gamma}\right) = \frac{\exp\left[-\mathcal{H}_D(\hat{\gamma})\right] \prod_{e \in E^*(\gamma)} \pi_{l[e]}}{\mathcal{Z}[\mathcal{H}_D]},$$

where  $\mathcal{Z}[\mathcal{H}_D]$  is the partition function,  $E^*$  denotes **primary edges**, i.e. maximal open connected collinear line segments consisting of multiple edges (due to T- or X-nodes), and  $l[e] \in \mathcal{T}$  is the line containing e.

For a special choice of  $\mathcal{H}$ , the model has remarkable properties. Fix  $k \geq 2$ ,  $\alpha_V \in [0,1]$ . Set  $\alpha_X = 1 - \alpha_V$  and

$$\alpha_T = \frac{1}{2} \left( 1 - \frac{k-2}{k-1} \alpha_X \right); \qquad \epsilon = \frac{\alpha_V}{k-1} + \frac{k-2}{k-1} \alpha_T.$$





## Consistent polygonal fields

Define Hamiltonian  $\Phi_D(\hat{\gamma})$  by

$$= -N_{V}(\gamma) \log \alpha_{V} - N_{T}(\gamma) \log((k-1)\alpha_{T}) - N_{X}(\gamma) \log((k-1)\alpha_{X})$$

$$+ \operatorname{card}(E(\gamma)) \log(k-1)$$

$$- \sum_{e \in E(\gamma)} \sum_{l \in \mathcal{T}, l \nsim e} \log(1 - \epsilon \pi_{l}) + \sum_{n(l_{1}, l_{2}) \in \gamma} \log\left(1 - \frac{\alpha_{V}}{k-1} \pi_{l_{1}} \pi_{l_{2}}\right)$$

where N(V), N(T), N(X) are the number of V-, T-, and X-nodes,

$$\mathcal{Z}[\Phi_D] = k \prod_{l \in \mathcal{T}, \ l \cap D \neq \emptyset} (1 + \pi_l) \prod_{n(l_1, l_2) \in D} \left( 1 - \frac{\alpha_V}{k - 1} \pi_{l_1} \pi_{l_2} \right)^{-1}.$$

#### **Theorem**

 $\hat{\mathcal{A}}_{\Phi_D} \cap D' = d \hat{\mathcal{A}}_{\Phi_{D'}}$  for bounded open convex  $D' \subseteq D$ .





## Proof: Dynamic representation

Interpret

$$(t,y) \in D$$

as: y is the 1D position of a particle at time t.

W.l.o.g. assume no line of  $\mathcal{T}$  is parallel to the spatial axis.

#### **Birth sites**

- at each node  $n(l_1, l_2) \in \mathcal{T} \cap D$  w.p.  $\alpha_V \pi_{l_1} \pi_{l_2} / (k-1)$  two particles are born, moving forward in time along  $l_1$  and  $l_2$  unless some previously born particle hits the node;
- at each entry point in(l, D) of lines  $l \in \mathcal{T}$  into D, w.p.  $\pi_l/(1 + \pi_l)$  a single particle is born, moving forward in time along l.

Colours are chosen uniformly conditional on not clashing with the colour just prior (left) to the birth.



## Dynamic representation: Collisions

of two particles at some moment t with  $(t,y) = n(l_i,l_j) \in D$ 

**a** if the colours above and below are identical, w.p.  $\alpha_V$  both particles die, w.p.  $\alpha_X$  both survive and a new colour is chosen w.p. 1/(k-1) for each admissible colour;





**b** if the colours above and below clash, w.p.  $\alpha_T$ , each of the two particles survives while the other dies; w.p.  $1-2\alpha_T$ , both survive and a new colour is chosen w.p. 1/(k-2) for each admissible colour.





**Note:** a collision prevents a birth at that node.



## Dynamic representation: Updates at nodes

Whenever a particle moving along  $l_i \in \mathcal{T}$  reaches  $n(l_i, l_j)$ , it

- **a** will change velocity to continue along  $l_j$  w.p.  $\alpha_V \pi_{l_j}/(k-1)$ ;
- **b** splits into two particles moving along  $l_i$  and  $l_j$  w.p.  $(k-2)\alpha_T\pi_{l_j}/(k-1)$ ; a new colour is chosen uniformly from the k-2 possibilities;
- **c** keeps moving along  $l_i$  otherwise (w.p.  $1 \epsilon \pi_{l_i}$ ).



These dynamics define a random coloured polygonal configuration that can be shown to coincide in distribution with  $\hat{\mathcal{A}}_{\Phi_D}$ . Consistency follows.

#### Further properties

For  $\hat{\mathcal{A}}_{\Phi_D}$ , the following hold.

**Linear sections:** For any line l containing no nodes of  $\mathcal{T}$ ,  $\hat{\mathcal{A}}_{\Phi_D} \cap l$  coincides in law with  $\Lambda_{\mathcal{T}} \cap l$ , where each  $l^* \in \mathcal{T}$  belongs to  $\Lambda_{\mathcal{T}}$  w.p.  $\frac{\pi_{l^*}}{1+\pi_{l^*}}$  independently of others.

**Spatial Markov:** For a piecewise smooth simple closed curve  $\theta \subset \mathbb{R}^2$  containing no nodes of  $\mathcal{T}$ , the conditional distribution in the interior of  $\theta$  depends on the exterior configuration only through the intersection points and intersection directions of  $\theta$  with the edges of the polygonal field and through the colouring of the field along  $\theta$ .

#### **Notes**

- properties resemble those of continuous Arak–Surgailis fields;
- the spatial Markov property implies the local Markov property.





## Examples

 $\mathcal{T}$  consists of tilted line bundles with density 0.07 on  $[-128, 128]^2$  and  $\pi_l \equiv 1/2$  for all  $l \in \mathcal{T}$ .



Figure 1: Tilted line bundle.



Figure 2: Samples of  $\hat{\mathcal{A}}_{\Phi_D}$  with k=3,  $\alpha_V=0$  (left),  $\alpha_V=1/2$  (centre) and  $\alpha_V=1$  (right).

## Birth-death dynamics for consistent fields

For k=2,  $\alpha_V=1$  (Schreiber and Van Lieshout, 2010)

- for each admissible  $\gamma$ , there are only two colourings;
- all particles die upon collision.

For k > 2, these facts no longer apply.

For k > 2, use continuous time dynamics with three types of updates:

- add a particle birth;
- delete a (discarded) particle birth at rate 1;
- recolour the graph by Knuth shuffling at rate  $\tau > 0$ .

To find the birth rate, solve the balance equations to obtain rate

$$c\pi_{l_1}\pi_{l_2}/(1-c\pi_{l_1}\pi_{l_2})$$

with  $c = \alpha_V/(k-1)$  for vacant internal node  $n(l_1, l_2)$ . If  $n(l_1, l_2)$  is hit by some previously born particle, the birth is discarded. The boundary birth rate at  $\operatorname{in}(l, D)$  is  $\pi_l$ .

#### Birth-death dynamics for consistent fields (ctd)

The trajectories of particle(s) emitted at a birth update and their collisions are chosen in accordance with the dynamic representation, re-using existing trajectories whenever possible. A dual reasoning is applied to deaths.



Figure 3: Boundary birth update: Old configuration (left), new configuration (right). Line colour corresponds to label below the line.



## Accept-reject sampler

for  $\hat{\mathcal{A}}_{\Phi_D + \mathcal{H}}$  accepts a new state  $\hat{\gamma}'$  with probability

$$\min (1, \exp [\mathcal{H}(\hat{\gamma}) - \mathcal{H}(\hat{\gamma}')]).$$

#### Example

$$\mathcal{H}(\hat{\gamma}) = \beta \left[ -\sum_{e \in E(\gamma)} \sum_{l \in \mathcal{T}, \ l \nsim e} \log(1 - \epsilon \pi_l) \right]$$

For  $\beta > 0$ , there tend to be more large, fat cells; for  $\beta < 0$  more thin, elongated shapes.



Figure 4: Samples of  $\hat{\mathcal{A}}_{\Phi_D+\mathcal{H}}$  with  $\alpha_V=1/2$  and  $\beta=-1/4$  (left) and  $\beta=1/4$  (right) for  $\tau=10$  and time 15,000 (over five million updates).

#### Summary

We presented a class of multi-colour discrete random fields on finite graphs

- inspired by consistent polygonal Markov fields;
- that have an explicit partition function;
- that generalise the binary fields considered before;
- cover classic Gibbs fields;
- and have a dynamic representation on which new simulation algorithms may be based.
- In contrast to the continuum, collinear edges are allowed.
- The fixed regular linear tessellation may be replaced by a random one (e.g. Poisson line process) or be determined by data (image segmentation).





#### References

- 1. Arak, T., and Surgailis, D. (1989). Markov Fields with polygonal realisations. *Probability Theory and Related Fields* **80**, 543–579.
- Kluszczyński, R., Lieshout, M.N.M. van, and Schreiber, T. (2005). An algorithm for binary image segmentation using polygonal Markov fields. In: F. Roli and S. Vitulano (Eds.), Image Analysis and Processing, Proceedings of the 13th International Conference on Image Analysis and Processing. Lecture Notes in Computer Science 3615, 383–390.
- 3. Kluszczyński, R., Lieshout, M.N.M. van, and Schreiber, T. (2007). Image segmentation by polygonal Markov fields. *Annals of the Institute of Statistical Mathematics* **59**, 465–486.
- 4. Lieshout, M.N.M. van (2012) Multi-colour random fields with polygonal realisations. ArXiv 1204.2664, April 2012.
- 5. Lieshout, M.N.M. van, and Schreiber, T. (2007). Perfect simulation for length-interacting polygonal Markov fields in the plane. *Scandinavian Journal of Statistics* **34**, 615–625.
- Matuszak, M., and Schreiber, T. (2012). Locally specified polygonal Markov fields for image segmentation. In: L. Florack, R. Duits, G. Jongbloed, M.–C. van Lieshout and L. Davies (Eds.), Mathematical methods for signal and image analysis and representation. *Computational Imaging* and Vision 41, 261–274.
- 7. Schreiber, T. (2005). Random dynamics and thermodynamic limits for polygonal Markov fields in the plane. *Advances in Applied Probability* **37**, 884–907.
- 8. Schreiber, T. (2008). Non-homogeneous polygonal Markov fields in the plane: graphical constructions and geometry of higher-order correlations. *Journal of Statistical Physics* **132**, 669–705.
- 9. Schreiber, T., and Lieshout, M.N.M. van (2010). Disagreement loop and path creation/annihilation algorithms for binary planar Markov fields with applications to image segmentation. *Scandinavian Journal Statistics* **37**, 264–285.



