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Arak–Surgailis polygonal Markov fields

form a coloured mosaic by

• isotropic Poisson line process skeleton for drawing polygonal

contours;

• no line can be used more than once; many mosaics can be drawn

on the same skeleton;

• adjacent polygons have different colours;

• probability distribution defined by Hamiltonian chosen so that

• basic properties of the Poisson line process carry over,

• dynamic representation in terms of particle system holds.
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Background and aim

In [9], Schreiber and I introduced a class of binary random fields that

can be understood as discrete versions of the two-colour Arak process.

Goal

extend the construction to

• allow for an arbitrary number of colours;

• relax the assumption that no polygons of the same colour can be

joined by corners only;

• have a dynamical representation that can be used for sampling;

• satisfy a spatial Markov property.
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Regular linear tessellations

are countable families T of straight lines in R
2 such that

• no three lines of T intersect at one point;

• a bounded subset of R
2 can be hit by at most a finite number of

lines from T .

Fixed activity parameters πl ∈ (0, 1) are ascribed to each l ∈ T .

Examples

• Poisson line process;

• regular planar lattice.
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Polygonal configuration

• D ⊂ R
2 bounded, open and convex;

• ∂D contains no nodes, that is, no intersections of two lines of T ;

• for all l ∈ T , card(l ∩ ∂D) = 2;

• J = {1, . . . , k}, k ≥ 2.

Γ̂D(T ) is the set of all planar graphs γ in D ∪ ∂D with faces coloured by

labels in J such that

• all edges of γ lie on the lines of T ;

• all vertices of γ in D are of degree 2, 3, or 4;

• all vertices of γ on ∂D, are of degree 1;

• no adjacent regions share the same colour.

ΓD(T ) consists of all planar graphs γ in D = D ∪ ∂D arising as interfaces

between differently coloured regions in γ̂ ∈ Γ̂D(T ).
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Discrete polygonal field

ÂHD
with Hamiltonian HD : Γ̂D(T ) 7→ R ∪ {+∞} is defined by

P

“

ÂHD
= γ̂

”

=
exp [−HD(γ̂)]

Q

e∈E∗(γ) πl[e]

Z[HD]
,

where Z[HD] is the partition function, E∗ denotes primary edges, i.e.

maximal open connected collinear line segments consisting of multiple

edges (due to T- or X-nodes), and l[e] ∈ T is the line containing e.

For a special choice of H, the model has remarkable properties. Fix

k ≥ 2, αV ∈ [0, 1]. Set αX = 1 − αV and

αT =
1

2

„

1 −
k − 2

k − 1
αX

«

; ǫ =
αV

k − 1
+

k − 2

k − 1
αT .
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Consistent polygonal fields

Define Hamiltonian ΦD(γ̂) by

= −NV (γ) log αV − NT (γ) log((k − 1)αT ) − NX(γ) log((k − 1)αX)

+ card(E(γ)) log(k − 1)

−
X

e∈E(γ)

X

l∈T , l≁e

log(1 − ǫπl) +
X

n(l1,l2)∈γ

log

„

1 −
αV

k − 1
πl1πl2

«

where N(V ), N(T ), N(X) are the number of V-, T-, and X-nodes,

Z[ΦD] = k
Y

l∈T , l∩D 6=∅

(1 + πl)
Y

n(l1,l2)∈D

„

1 −
αV

k − 1
πl1πl2

«−1

.

Theorem

ÂΦD
∩ D′ =d ÂΦD′

for bounded open convex D′ ⊆ D.
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Proof: Dynamic representation

Interpret

(t, y) ∈ D

as: y is the 1D position of a particle at time t.

W.l.o.g. assume no line of T is parallel to the spatial axis.

Birth sites

• at each node n(l1, l2) ∈ T ∩D w.p. αV πl1πl2/(k − 1) two particles are

born, moving forward in time along l1 and l2 unless some previously

born particle hits the node;

• at each entry point in(l, D) of lines l ∈ T into D, w.p. πl/(1 + πl) a

single particle is born, moving forward in time along l.

Colours are chosen uniformly conditional on not clashing with the

colour just prior (left) to the birth.
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Dynamic representation: Collisions

of two particles at some moment t with (t, y) = n(li, lj) ∈ D

a if the colours above and below are identical, w.p. αV both particles

die, w.p. αX both survive and a new colour is chosen w.p. 1/(k − 1)

for each admissible colour;

b if the colours above and below clash, w.p. αT , each of the two

particles survives while the other dies; w.p. 1 − 2αT , both survive and

a new colour is chosen w.p. 1/(k − 2) for each admissible colour.

Note: a collision prevents a birth at that node.
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Dynamic representation: Updates at nodes

Whenever a particle moving along li ∈ T reaches n(li, lj), it

a will change velocity to continue along lj w.p. αV πlj /(k − 1);

b splits into two particles moving along li and lj w.p. (k−2)αT πlj /(k−1);

a new colour is chosen uniformly from the k − 2 possibilities;

c keeps moving along li otherwise (w.p. 1 − ǫπlj ).

These dynamics define a random coloured polygonal configuration that

can be shown to coincide in distribution with ÂΦD
. Consistency follows.
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Further properties

For ÂΦD
, the following hold.

Linear sections: For any line l containing no nodes of T , ÂΦD
∩ l

coincides in law with ΛT ∩ l, where each l∗ ∈ T belongs to ΛT w.p.
πl∗

1+πl∗
independently of others.

Spatial Markov: For a piecewise smooth simple closed curve θ ⊂ R
2

containing no nodes of T , the conditional distribution in the interior

of θ depends on the exterior configuration only through the

intersection points and intersection directions of θ with the edges of

the polygonal field and through the colouring of the field along θ.

Notes

• properties resemble those of continuous Arak–Surgailis fields;

• the spatial Markov property implies the local Markov property.
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Examples

T consists of tilted line bundles with density 0.07 on [−128, 128]2 and

πl ≡ 1/2 for all l ∈ T .

Figure 1: Tilted line bundle.

Figure 2: Samples of ÂΦD
with k = 3, αV = 0 (left), αV = 1/2 (centre) and

αV = 1 (right).
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Birth–death dynamics for consistent fields

For k = 2, αV = 1 (Schreiber and Van Lieshout, 2010)

• for each admissible γ, there are only two colourings;

• all particles die upon collision.

For k > 2, these facts no longer apply.

For k > 2, use continuous time dynamics with three types of updates:

• add a particle birth;

• delete a (discarded) particle birth at rate 1;

• recolour the graph by Knuth shuffling at rate τ > 0.

To find the birth rate, solve the balance equations to obtain rate

cπl1πl2/(1 − cπl1πl2)

with c = αV /(k − 1) for vacant internal node n(l1, l2). If n(l1, l2) is hit by

some previously born particle, the birth is discarded. The boundary birth

rate at in(l, D) is πl.
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Birth–death dynamics for consistent fields (ctd)

The trajectories of particle(s) emitted at a birth update and their

collisions are chosen in accordance with the dynamic representation,

re-using existing trajectories whenever possible. A dual reasoning is

applied to deaths.

Figure 3: Boundary birth update: Old configuration (left), new configura-

tion (right). Line colour corresponds to label below the line.
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Accept-reject sampler

for ÂΦD+H accepts a new state γ̂′ with probability

min
`

1, exp
ˆ

H(γ̂) −H(γ̂′)
˜´

.

Example

H(γ̂) = β

2

4−
X

e∈E(γ)

X

l∈T , l≁e

log(1 − ǫπl)

3

5

For β > 0, there tend to be more large, fat cells; for β < 0 more thin,

elongated shapes.

Figure 4: Samples of ÂΦD+H with αV = 1/2 and β = −1/4 (left) and

β = 1/4 (right) for τ = 10 and time 15, 000 (over five million updates).
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Summary

We presented a class of multi-colour discrete random fields on finite

graphs

• inspired by consistent polygonal Markov fields;

• that have an explicit partition function;

• that generalise the binary fields considered before;

• cover classic Gibbs fields;

• and have a dynamic representation on which new simulation

algorithms may be based.

• In contrast to the continuum, collinear edges are allowed.

• The fixed regular linear tessellation may be replaced by a random

one (e.g. Poisson line process) or be determined by data (image

segmentation).
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