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Introduction

Continuum percolation result ift skeleton graph for Poisson
stationary point process with unit intensitylR?.
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Introduction

Some applications

o Ferromagnetism (at low temperature) and Ising model

o Disordered electrical networks (electrical resistance of a mixture
of two materials)

@ Cancerology for the study of the growth of tumor when the
cancer cells suddently begin to invade healthy tissue.

o Epidemics and fires in orchards
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Introduction

Bibliography

@ Meester and Roy [5] for continuum percolation

@ Haggstrom and Meester [4] proposed results for continuum
percolation problems for thenearest neighbor graph under
Poisson process

o Bertin et al. [2] proved the result for the Gabriel graph

@ Bollobas and Riordan [3] critical probability for random Voronoi
percolation in the plane is 1/2.

o Balister and Bollobas [1] gave bounds lofor thek-nearest
neighbor graph for percolation
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Gg graphs

GraphsG; = (V, E, Ng)

(u,v) € E< Lyy(B) NV = 0 respectivelyCyy(5) NV = 0.
LUV ( +7V_ 7 /B(Oé)>

2
NnD ( v+(u—v)ﬁ(2a), 5(;)
Cuv(8) =D (cbaﬂ(za)) uD <c2,a5(2a))

with §(cq, u) = d(c, V) = d(C2,u) = 6(C,V) = afl) 2 andﬁ( ) >
ForO< f(a) <1:

(07 «
) =0 (&5 7555) 70 (¢ 575



Gg graphs

Luv(8) with 3 > 1 Cun(B) with B < 1 Cun(B) with B> 1
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The rolling Ball Method

1-independent percolation

To prove that continuous percolation occurs, we shall compare the
process to various bond percolation modelsZdnin these models,
the states of the edges are not be independent.

Definition

A bond percolation model is 1-independent if whendzgandE, are

sets of edges at graph distance at least 1 from each another (i.e., if no
edge ofE; is incident to an edge di,) then the state of the edges i

E; is independent of the state of the edgeEin
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The rolling Ball Method

The Rolling Ball Method
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The rolling Ball Method

Comparison witHz?

o Write u ~ vif uvis an edge of the underlying graph

o Percolation = infinite path : a sequenggus, . .. with U ~ Ui
for alli.

o Let&s s, be the event that every vertex in the central diskC,
of § is joined to at least one vertexn the central disiC, of S
by aGg— path, regardless of the state of the Poisson process
outside ofS; andS,.

e Each vertexi,j) € Z? corresponds to a square
[Ri,R(i + 1)] x [Rj,R(j + 1)] € R2, whereR = 2r + 2q, and an
edge is open between adjacent vertices (corresponding to square
S andS) if both eventsts, s, and&s, s, hold.

e l-independent model d&? since the evenfs, s, depends only
on the Poisson process within the reglrandsS,.
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The rolling Ball Method

Comparison witHz?

@ Any open path irZ? corresponds to a sequence of events
&s.s,Es,.5 - - - that occur, wher§ is the square associated with
a site inZ2.

o Every vertexu; of the original Poisson process that lies in the
central diskC; of S, now has an infinite path leading away from
it, since one can find pointg in the central disk 0§ and paths
from u;_1 to u; inductively for everyi > 1.

@ One can choose g andg so that the probability that the
intersection of these events is large and then we will apply the
theorem of Balister, Bollobas and Walters.
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The rolling Ball Method

A result of a 1-independent bond percolationZn

Theorem (Balister, Bollobas, WaltelRandom Structures and
Algorithms 2005)

If every edge in a 1-independent bond percolation modélois

open with probability at leadd.8639 then almost surely there is an
infinite open component. Moreover, for any bounded region, there is
almost surely a cycle of open edges surrounding this region.
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The main result

The main result

Let Es, s, be the event that for every poimtc C; U L, there is au
such that :

a)v~u;

b)d(u,v) <'s;and

¢) u € Dy, whereDy is the disk of radius insideC; U L U C, with v
on itsC;-side boundary (the dotted disk in Figure 1).

If Es, s, holds, then every vertexin C; must be joined by &z —path
to a vertex inC,, since each vertex i6; U L is joined to a vertex
whose diskD,, is further along inC; U L U Ca.
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The main result

The main result

Es.s = {9 € Q/WE ¢ 1, UE @, nnq (9—0—0u)(Ng(uv)) = 0}

A= {p € Q/p(Do) > 0}
A= Esl,s2 N ESz,Sl N AL

We can find s, r ang, function of the length of edges, so that

p(A) < 0.1361
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ESL,SZUA]_CA]_UAzUAg

Po={p€eQ/IVE @, ., (¢—d)(DyND(y,s)) =0}
As={p €Q/IVE ¢, VUE @, g (¢ — v —du)(Ns(uv)) > 0}

P(A1) = e, Using Campbell’'s theorem and Slyvnyak’s theorem :
GivenAp, = {¢ € 2/p(DyND(v,s)) = 0} and
Ap, = {¢ € 2/p(DoND(O,s)) = 0}, it comes

Iay(9) < Ly (V) Lag, (¢ — 0v).
vep
P(A2) < |C1UL| P5(Ap,) = |CLUL|P(Ap,) = 2r (2r+2s)e™PonP(O:s)]

For the last probability, by introducing the following events
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A ={p € Q/VUE ¢y o4, (¢ — du)(Ns(uv)) > 0}
Ao ={p € Q/VUE ¢, 164> (¢ = 0u)(N3(uO)) > 0}
Aou = {y € 2/¢p(Ns(Ou)) > 0.

1ns () = %%Xl[cluu (V)1a,(¢ — 6v) < Z Lic,u (V) 1a, (¢ — 6v).
VEp

P( )<!C1UL|P!O( Ag) = [C1UL|P(Ao).

) < Z 1DonD<o 9 1A0u(90 du),
uep

Plo) < [ Ptogdu= [ (- My
DoND(O,9) DoND(0,s)

P(As) < |CLUL| (1 — e INs©Ohqy,
DoND(0,9)
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P(Es,s UA1) < e 4 2r(2r + 2q)e*|D0r‘D(O,S)\

S
XN (1 - e Ns(@)
+4r(2r + 2q)/0 aarccos<2r> 1-e ) dov.
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Remark : we choose the begtso that every neighborhood of two
differents points insid€, U L stay inside the rectangular zoBgU S.
We are looking for a functiopy constant on an interva, t] and
function of« on the intervalt, s so thatNg(a)| = |Ng(t)| for all
in [t, 5. We have :

P(Es,.s, UA1) <™ + 2r(2r + 2g)e™ IPorP(O)
t
2N (1 - e INs(@)
+4r(2r + 2q)/0 aarccos(2r> (1-e ) dav

S
2N (1 - e INs)
+4r (2r + 2q)/t o' arccos( 2r> (1-¢€ ) da.
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Numerical results

6 N3 r s a(t=a/100x 9
1 (Gabriel Graph) Lyy(1) | 1.437] 2.625 1.025
2 (RNG Graph) | Lyy(2) |1.491] 2731 0.631
3 Luv(3) | 1.515] 2.824 0.484
2 Cuv(2) | 1.6 |[2.882 0.176
3 Cuv(3) | 1.7 [ 2.862 0.087
1/2 Cuv(1/2) | 1.4 [ 2522 2.71
0<3<0001 | Cu(B) | 1.31] 26 100
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