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PROBLEM STATEMENT

Adaptive sampling in Markov random fields

» Adaptive selection of variables to observe for
reconstruction of the random vector

X=(X(1),....,X(n))

X X X
(1) ® (2‘ (3).

X(4) ® X(5) ® X(6) ®
*c(A) ->  Cost of observing variables X(A)

X X8l X
(7)‘ ()‘ (9)

*B ->  Initial budget

*Observations are reliable
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PROBLEM STATEMENT

Adaptive sampling in Markov random fields

« Adaptive selection of variables to observe for *c(A,x(A)) ->  Costof observing
reconstruction of the random vector variables X(A) in state x(A)

X=(X(1),....,X(n))

*Observations are reliable B ->  Initial budget

Problem: Find strategy / sampling policy to adaptively select variables to observe
in order to :

Optimize Quality of the reconstruction of X / Respect Initial Budget
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PROBLEM STATEMENT

Adaptive sampling in Markov random fields I

« Adaptive selection of variables to observe for *c(A,x(A)) ->  Costof observing
reconstruction of the random vector variables X(A) in state x(A)

X=(X(1),....,X(n))

*Observations are reliable B ->  Initial budget

Problem: Find strategies / sampling policy to adaptively select variables to observed
in order to :

Optimize Quality of the reconstructed vector X / Respect Initial Budget



e CC—————m
DEFINITION: Adaptive sampling policy

For any sampling plans A',...,At and observations x(A?),..., x(At), an adaptive
sampling policy § is a function giving the next variable(s) to observe:

5((ALx(AD),...,(ALx(AD)) =AM,



e CC—————m
DEFINITION: Adaptive sampling policy

For any sampling plans A!,...,At and observations x(A?Y),..., x(AY), an adaptive
sampling policy § is a function giving the next variable(s) to observe:

5((ALx(AD),...,(ALx(AD))=A"",

-- Example --

Al= §1={8}
(1) ® (2‘ (3)‘ .

X X X(6
(4). (5). ().

X() g X3 X0 g x(A2)=(1,3)
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DEFINITIONS

For any sampling plans A!,...,At and observations x(A?Y),..., x(AY), an adaptive
sampling policy § is a function giving the next variable(s) to observe:

5((ALx(AD),...,(ALx(AD))=A"",

*Vocabulary :

Al= §'={8}
A history {(AL, x (AY)), ..., (A}, x (AH) }
is a trajectory followed when applying &§

. T§ : set of all reachable histories of 6§
x(A%)=(1,3)

* c(6) < B &cost of any history respects
the initial budget



GENERAL APPROACH
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GENERAL APPROACH |

1. Find a distribution P that well describes the phenomenon under study.

2. Define the value of adaptive sampling policy:
Vi)=Y  P(2(A)U(A z(4))
(A,x(A))ETs

3. Define approximate resolution method for finding near optimal policy:

5 = arg max V(8
s



T ———————
STATE OF THE ART |

1. Find a distribution P that well describes the phenomenon under study.

> X continuous random vector

» P multivariate Gaussian joint
distribution

2. Define the value of adaptive sampling policy:

V(§) = > P(z(A)U (A, x(A))

(A.x(A))eTs

» Entropy based criterion

»Kriging variance
3. Define approximate resolution method for finding near optimal policy:

5" = arg max V(6
s

»Greedy algorithm



T ——————
OUR CONTRIBUTION |

1. Find a distribution P that well desribed the phenomenon under study.

» X continuous random vector » X discrete random vector
» [P multivariate Gaussian joint »P Markov random field distribution
distribution

2. Define the value of adaptive sampling policy:

V(§) = > P(z(A)U (A, x(A))
(A,x(A))eTs
» Entropy based criterions »Maximum Posterior Marginals (MPM)
»Kriging variance

3. Define approximate resolution method for finding near optimal policy:

—ar% max V(9)

»Greedy algorithm » Reinforcement learning
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Formulation using dynamic model

An adapted framework for
reinforcement learning




» Summarize knowledge on X in a random vector S of length n
*Observe variables - update our knowledge on X - Evolution of S

Example: s=(-1,........ S Ky ,-1) ——> Variable X(i) was observed in state k

U(SH+1)




» Summarize knowledge on X in a random vector S of length n
*Observe variables - update our knowledge on X - Evolution of S

Example: s=(-1,........ S Ky ,-1) ——> Variable X(i) was observed in state k

U(SH+1)




Reinforcement learning solution




Find optimal policy: The Q-function

Vt, Vst : VA Q*(St : At) = « The expected value of the history when starting in
st, observing variables X(At)and then following policy
O*»

— Z P(St+l | st,At) max Q*(sﬁ_l, At+l)

t+1
st+1 A

. 5"“(5") = arg Hlﬂx@x(ﬂﬂp Aﬂ)

Af

» Compute Q* <& Compute 6§ *



Find optimal policy: The Q-function

« How to compute Q*: classical solution (Q-learning ...)

1. Initialize Q

U(s3)

2. Simulate history S - -t -

A1 / Az/

arg mﬁxQ (s',A")  with proba 1-¢

random with proba ¢



Find optimal policy: The Q-function

« How to compute Q*: classical solution (Q-learning ...)

1. Initialize Q

Update Q(s',Al) Update Q(s2,A?)
\
U(s3)
2. Simulate history I P - 7 many times!

A1 / A2/

arg mﬁxQ (s',A")  with proba 1-¢

random with proba ¢



Alternative approach

* Linear approximation of Q- functlon

Vi=1...H .~ (s, A") = Zw@g

~ ZP t+1 | gl Af) maxQ ( t+1 AH_l)

t+1
g+l A

C QM) = QM) = U (A a(4")), . (AT a(4T))

* Choice of function ®;:

Vi=lon o, 4) = max P(2(i) | #(A").... 2(A7)

—1 siie A



LSDP Algorithm

» Define weights for each decision step

»Compute weights using “backward induction”

* Linear approximation of Q-function:
mn
Vi=1...n Q' (s’ A" = Z w! (s’ A
1=1
~ ZP(St-H | st,At) max Q* (s, AT

t+1
gl+1 A

o~

F Q) =Q (") = U((4 2(4),...., (47, 2(4T)))



LSDP Algorithm: application to sampling

1. Computation of @, (s',AY):

di(s', A" = m(aj‘ﬂ?’(ﬂ?(i) | z(AY), ... z(AT)

2. Computation of P(sHl | s, At) = IP(:I:(At) | -’1'5’(141); . +:33(At_1))

3. Computation of U(SHJrl) = U((Al, :1‘:(141)), cees (AH, T(AH)))

— deP(T(?) | T(Al)::'T(AH))

P (1)



LSDP Algorithm: application to sampling

1. Computation of ®,(s%AY):

pi(s', A = (d)XIP(T(?) | 2(AY). ... x(ATh)

2. Computationof P (s | s", A") = P(z(A") | z(AY),....z(A"™h)

3. Computationof U(s"*!) =U((A", 2(AY)),..., (A", z(AT)))

i—1 P s

* We fix|At|=1 and use the approximation:

t

P(a(i) | 2(AY),...,2(A") ~ PPP(a(i)+ {ZPBP@(@') | 2(A7)) PP (2(1))

j=1



Experiments




Experiments
X(1) ° X(2‘ X(3).

* Regular grid with first order neighbourhood.

X X X(6
(4)‘ (5). ().

X(7) X(8)L X(9)
*X(i) are binary variables. [ @ o

[P is a Potts model with [3=0.5

P(z(1),...,2(n)) ocexp( > Beq(z(i) ))

(31.}' EE

 Simple cost: observation of each variale cost 1



Experiments

« Comparison between:
» Random policy

»BP-max heuristic: at each time step observed variable

A' = argmin (m&XPBP(m(i) [ 2(A), .., m(Atl)))

1=1....n (i)

»LSPI policy “ common reinforcement learning algorithm”

»LSDP policy

* using score:

o~ o~

V(6) —V(dr)
'V (68P—maz) — V (6r)|

score(d) =



|
Experiment: 100 variables (n=100)

Score.

Number of observed variables (H)



Experiment: 100 variables - constraint move

 Allowed to visit second ordre
neighbourood only !




Experiment: 100 variables - constraint move

 Allowed to visit second ordre
neighbourood only !




Experiment: 100 variables - constraint move

1

5 10 15 20
Number of observed variables (H)




Conclusions

» An adapted framework for adaptive sampling in discrete random variables

*LSDP: a reinforcement learning approach for finding near optimal policy

» Adaptation of common reinforcement learning algorithm for
solving adaptive sampling problem

»Computation of near optimal policy « off-line »

> Design of new policies that outperform simple heuristics and usual RL
method

* Possible application?

> See next presentation !



THANK YOU!




Reconstruction of X(R) and trajectory value

Al= §'={8}

« Maximum Posterior Marginal for reconstruction:

Vr€R  F(r) = arg m(aicﬂp(x(?“) | z(AY), ... z(AT))



Reconstruction of X(R) and trajectory value

Al= 6'=(8}

U((A, 2(AY), (A%, 2(A?)))

« Maximum Posterior Marginal for reconstruction:

Vr € R ”j(?) — arg m(di}{]?(:c(?) | ZC(Al)} Ce }SU(AH))

* Quality of trajectory:

U((AY, z(AY)), ... (A" =) P(E(r) | w(AY),...,z(A"))

relR

= Ex-(g) [ > eq(@*(r), #(r)) | ﬂf(ﬂl)w"m(‘qﬂ)]

relRl



