A reinforcement learning algorithm for sampling design in Markov random fields

Mathieu BONNEAU Nathalie PEYRARD Régis SABBADIN

INRA-MIA Toulouse E-Mail: {mbonneau,peyrard,sabbadin}@toulouse.inra.fr

SSIAB, Avignon, 9 mai 2012

Plan

- 1. Problem statement.
- 2. General Approach.
- 3. Formulation using dynamic model.
- 4. Reinforcement learning solution.
- 5. Experiments.
- 6. Conclusions.

PROBLEM STATEMENT

Adaptive sampling in Markov random fields

 Adaptive selection of variables to observe for reconstruction of the random vector X=(X(1),...,X(n))

• c(A) -> Cost of observing variables X(A)

• B -> Initial budget

•Observations are reliable

PROBLEM STATEMENT

Adaptive sampling in Markov random fields

 Adaptive selection of variables to observe for reconstruction of the random vector X=(X(1),,X(n)) 	• c(A,x(A)) variables	->	Cost of observing X(A) in state x(A)
•Observations are reliable	• B	->	Initial budget

Problem: Find strategy / sampling policy to adaptively select variables to observe in order to :

Optimize Quality of the reconstruction of X / Respect Initial Budget

PROBLEM STATEMENT

Adaptive sampling in Markov random fields

 Adaptive selection of variables to observe for reconstruction of the random vector X=(X(1),,X(n)) 	• c(A,x(A)) variables	->	Cost of observing X(A) in state x(A)
•Observations are reliable	• B	->	Initial budget

Problem: Find strategies / sampling policy to adaptively select variables to observed in order to :

Optimize Quality of the reconstructed vector X / Respect Initial Budget

DEFINITION: Adaptive sampling policy

For any *sampling plans* $A^1,...,A^t$ and observations $x(A^1),..., x(A^t)$, an adaptive sampling policy δ is a function giving the next variable(s) to observe:

 $\delta((A^1, x(A^1)), ..., (A^t, x(A^t))) = A^{t+1}.$

DEFINITION: Adaptive sampling policy

For any *sampling plans* $A^1,...,A^t$ and observations $x(A^1),...,x(A^t)$, an adaptive sampling policy δ is a function giving the next variable(s) to observe:

 $\delta((A^1, x(A^1)), ..., (A^t, x(A^t))) = A^{t+1}.$

DEFINITIONS

For any *sampling plans* $A^1,...,A^t$ and observations $x(A^1),..., x(A^t)$, an adaptive sampling policy δ is a function giving the next variable(s) to observe:

 $\delta((A^1, X(A^1)), ..., (A^t, X(A^t))) = A^{t+1}.$

•<u>Vocabulary :</u>

•A *history* {(A^1 , x (A^1)), ..., (A^H , x (A^H)} is a trajectory followed when applying δ

- ${\it t}_{\delta}\,$: set of all reachable histories of δ

• $c(\delta) \le B \Leftrightarrow cost of any history respects$ the initial budget

GENERAL APPROACH

GENERAL APPROACH

1. Find a distribution \mathbb{P} that well describes the phenomenon under study.

2. Define the value of adaptive sampling policy:

$$V(\delta) = \sum_{(A,x(A))\in\tau_{\delta}} \mathbb{P}(x(A)) U(A, x(A))$$

3. Define approximate resolution method for finding near optimal policy:

$$\delta^* = \arg \max_{\delta, c(\delta) \le B} V(\delta)$$

STATE OF THE ART

1. Find a distribution \mathbb{P} that well describes the phenomenon under study.

➤ X continuous random vector

➤ ℙ multivariate Gaussian joint distribution

2. Define the value of adaptive sampling policy:

$$V(\delta) = \sum_{(A, x(A)) \in \tau_{\delta}} \mathbb{P} \big(x(A) \big) \frac{U}{U} \big(A, x(A) \big)$$

➢ Entropy based criterion

≻Kriging variance

3. Define approximate resolution method for finding near optimal policy:

$$\delta^* = \arg \max_{\delta, c(\delta) \le B} V(\delta)$$

➤Greedy algorithm

OUR CONTRIBUTION

1. Find a distribution \mathbb{P} that well desribed the phenomenon under study.

> X continuous random vector

▶ ℙ multivariate Gaussian joint distribution

- ➤ X discrete random vector
- $\succ \mathbb{P}$ Markov random field distribution
- 2. Define the value of adaptive sampling policy:

$$V(\delta) = \sum_{(A, x(A)) \in \tau_{\delta}} \mathbb{P} \big(x(A) \big) \frac{U}{U} \big(A, x(A) \big)$$

Entropy based criterions
 Maximum Posterior Marginals (MPM)
 Kriging variance

3. Define approximate resolution method for finding near optimal policy:

$$\delta^* = \arg \max_{\delta, c(\delta) \le B} V(\delta)$$

≻Greedy algorithm

Reinforcement learning

OUR CONTRIBUTION

1. Find a distribution \mathbb{P} that well desribed the phenomenon under study.

> X continuous random vector

P multivariate Gaussian joint distribution

- ➤ X discrete random vector
- $\succ \mathbb{P}$ Markov random field distribution
- 2. Define the value of adaptive sampling policy:

$$V(\delta) = \sum_{(A, x(A)) \in \tau_{\delta}} \mathbb{P} \big(x(A) \big) \frac{U}{U} \big(A, x(A) \big)$$

Entropy based criterions
 Maximum Posterior Marginals (MPM)
 Kriging variance

3. Define approximate resolution method for finding near optimal policy:

$$\delta^* = \arg \max_{\delta, c(\delta) \le B} V(\delta)$$

≻Greedy algorithm

Reinforcement learning

Formulation using dynamic model

An adapted framework for reinforcement learning

Summarize knowledge on **X** in a random vector **S** of length n

•Observe variables \rightarrow update our knowledge on $X \rightarrow$ Evolution of S

•<u>Example:</u> $s = (-1, ..., k, ..., -1) \longrightarrow Variable X(i) was observed in state k$

Summarize knowledge on **X** in a random vector **S** of length n

•Observe variables \rightarrow update our knowledge on $\mathbf{X} \rightarrow$ Evolution of S

•<u>Example:</u> $s = (-1, ..., k, ..., -1) \longrightarrow$ Variable X(i) was observed in state k

Reinforcement learning solution

Find optimal policy: The Q-function

 $\forall t, \forall s^t, \forall A^t \qquad Q^*(s^t, A^t) = \text{``The expected value of the history when starting in st, observing variables X(A^t) and then following policy \\ \delta^{*} \text{```}$

$$= \sum_{s^{t+1}} \mathbf{P}(s^{t+1} \mid s^t, A^t) \max_{A^{t+1}} Q^*(s^{t+1}, A^{t+1})$$

•
$$\delta^*(s^t) = \arg\max_{A^t} Q^*(s^t, A^t)$$

 $\succ \text{Compute } \mathbf{Q}^* \quad \Leftrightarrow \quad \text{Compute } \delta^*$

Find optimal policy: The Q-function

• How to compute Q*: classical solution (Q-learning ...)

1. Initialize Q

Find optimal policy: The Q-function

• How to compute Q*: classical solution (Q-learning ...)

1. Initialize Q

Alternative approach

• Linear approximation of Q-function:

$$\begin{aligned} \forall t = 1 \dots H \quad \cdot \widetilde{Q}^*(s^t, A^t) &= \sum_{i=1}^{P} w_i \phi_i(s^t, A^t) \\ &\simeq \sum_{s^{t+1}} \mathbf{P}(s^{t+1} \mid s^t, A^t) \max_{A^{t+1}} Q^*(s^{t+1}, A^{t+1}) \end{aligned}$$

•
$$\widetilde{Q}^*(s^{H+1}) = Q^*(s^{H+1}) = U((A^1, x(A^1)), \dots, (A^H, x(A^H)))$$

• Choice of function Φ_i :

$$\forall i = 1 \dots n \qquad \phi_i(s^t, A^t) = \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^{t-1}))$$
$$= 1 \quad \text{si } i \in A^t$$

LSDP Algorithm

Define weights for each decision step

≻Compute weights using "backward induction"

• Linear approximation of Q-function:

$$\begin{aligned} \forall t = 1 \dots n \quad \cdot \widetilde{Q}^*(s^t, A^t) &= \sum_{i=1}^n \boldsymbol{w}_i^t \phi_i(s^t, A^t) \\ &\simeq \sum_{s^{t+1}} \mathbf{P}(s^{t+1} \mid s^t, A^t) \max_{A^{t+1}} Q^*(s^{t+1}, A^{t+1}) \\ & \cdot \widetilde{Q}^*(s^{H+1}) = Q^*(s^{H+1}) = U((A^1, x(A^1)), \dots, (A^H, x(A^H))) \end{aligned}$$

LSDP Algorithm: application to sampling

1. Computation of $\Phi_i(s^t, A^t)$:

$$\phi_i(s^t, A^t) = \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^{t-1}))$$

2. Computation of $\mathbf{P}(s^{t+1} \mid s^t, A^t) = \mathbb{P}(x(A^t) \mid x(A^1), \dots, x(A^{t-1}))$

3. Computation of
$$U(s^{H+1}) = U((A^1, x(A^1)), \dots, (A^H, x(A^H)))$$

$$= \sum_{i=1}^{n} \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^H))$$

LSDP Algorithm: application to sampling

1. Computation of $\Phi_i(s^t, A^t)$:

$$\phi_i(s^t, A^t) = \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^{t-1}))$$

2. Computation of $\mathbf{P}(s^{t+1} \mid s^t, A^t) = \mathbb{P}(x(A^t) \mid x(A^1), \dots, x(A^{t-1}))$

3. Computation of
$$U(s^{H+1}) = U((A^1, x(A^1)), \dots, (A^H, x(A^H)))$$

$$= \sum_{i=1}^n \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^H))$$

• We fix $|A^t|=1$ and use the approximation:

$$\mathbb{P}(x(i) \mid x(A^1), \dots, x(A^t)) \simeq \mathbb{P}^{BP}(x(i)) + \left[\sum_{j=1}^t \mathbb{P}^{BP}(x(i) \mid x(A^j)) - \mathbb{P}^{BP}(x(i))\right]$$

Experiments

• Regular grid with first order neighbourhood.

•X(i) are **binary** variables.

• \mathbb{P} is a Potts model with $\beta = 0.5$

$$\mathbb{P}(x(1),\ldots,x(n)) \propto \exp\left(\sum_{(i,j)\in E}\beta eq(x(i),x(j))\right)$$

• Simple cost: observation of each variale cost 1

Experiments

- Comparison between:
 - ➤ Random policy

▶ BP-max heuristic: at each time step observed variable

$$A^{t} = \underset{i=1,\dots,n}{\operatorname{argmin}} \left(\max_{x(i)} \mathbb{P}^{BP} \left(x(i) \mid x(A^{1}), \dots, x(A^{t-1}) \right) \right)$$

LSPI policy " common reinforcement learning algorithm"LSDP policy

• using score:

$$score(\delta) = \frac{\widetilde{V}(\delta) - \widetilde{V}(\delta_R)}{|\widetilde{V}(\delta_{BP-max}) - \widetilde{V}(\delta_R)|}$$

Experiment: 100 variables (n=100)

Experiment: 100 variables - constraint move

• Allowed to visit second ordre neighbourood only !

Experiment: 100 variables - constraint move

• Allowed to visit second ordre neighbourood only !

Experiment: 100 variables - constraint move

Conclusions

• An adapted framework for adaptive sampling in discrete random variables

•LSDP: a reinforcement learning approach for finding near optimal policy

➤ Adaptation of common reinforcement learning algorithm for solving adaptive sampling problem

≻Computation of near optimal policy « off-line »

> Design of new policies that outperform simple heuristics and usual RL method

• Possible application?

See next presentation !

THANK YOU!

Reconstruction of X(R) and trajectory value

• Maximum Posterior Marginal for reconstruction:

$$\forall r \in R$$
 $\widetilde{x}(r) = \arg \max_{x(r)} \mathbb{P}(x(r) \mid x(A^1), \dots, x(A^H))$

Reconstruction of X(R) and trajectory value

• Maximum Posterior Marginal for reconstruction:

$$\forall r \in R \qquad \widetilde{x}(r) = \arg \max_{x(r)} \mathbb{P}(x(r) \mid x(A^1), \dots, x(A^H))$$

• Quality of trajectory:

$$U((A^{1}, x(A^{1})), \dots, (A^{H}, x(A^{H}))) = \sum_{r \in R} \mathbb{P}(\widetilde{x}(r) \mid x(A^{1}), \dots, x(A^{H}))$$

= $\mathbb{E}_{X^{*}(R)} \left[\sum_{r \in R} eq(x^{*}(r), \widetilde{x}(r)) \mid x(A^{1}), \dots, x(A^{H}) \right]$