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For any    sampling plans   A1 ,…,At    and   observations  x(A1),…, x(At) ,  an adaptive 
sampling policy 𝛿 is a function giving the next variable(s) to observe: 

    𝛿((A1,x(A1)),…,(At,x(At)))=At+1. 
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DEFINITIONS 
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•Vocabulary : 
 
•A history {( A1, x ( A1)) , … , ( AH, x ( AH) }  
is a trajectory followed when applying 𝛿 
 
 
•       : set of all reachable histories of 𝛿 
 
 
• c(𝛿) ≤ B cost of any history respects             
          the initial budget 
 

δτ
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Formulation using dynamic model 
An adapted framework for 
reinforcement learning 
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Reinforcement learning solution 



Find optimal policy: The Q-function 

•  

 Compute Q*       Compute 𝛿 * 

= « The expected value of the history when starting in 
st, observing variables X(At)and then following policy 

𝛿*» 
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Find optimal policy: The Q-function 

s1 s2 s3 

U(s3) 

Update Q(s1,A1) 
 

Update Q(s2,A2) 
 

A1 A2 

with proba   1-𝜀 

random with proba   𝜀 

many times! 

• How to compute Q*: classical solution (Q-learning …) 

1. Initialize Q 

2. Simulate history 



Alternative approach 

• Linear approximation of  Q-function: 

•  

•  

• Choice of function Φi:  



LSDP Algorithm 

• Linear approximation of  Q-function: 

•  

•  

 Define weights for each decision step 
 
 
 
Compute weights using  “backward induction”  



LSDP Algorithm: application to sampling 
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• We fix|At|=1    and   use the approximation: 
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Experiments 

• Regular grid with first order neighbourhood.  
 
 
 
•X(i)  are binary variables. 
 
 
 
•ℙ is a Potts model with    β=0.5 
 
 
 
 
 
 
 
• Simple cost:    observation of each variale cost 1 
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Experiments 

• Comparison between: 
 
 Random policy 
 
BP-max heuristic: at each time step observed variable 

 
 
 
 
LSPI policy          “ common reinforcement learning algorithm” 

 
LSDP policy 

 
 

•  using score:  
 
 

 
 
 



Experiment: 100 variables (n=100) 
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• Allowed to visit second ordre 
neighbourood only  ! 
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Conclusions 

• An adapted framework for adaptive sampling in discrete random variables 
 
 
•LSDP: a reinforcement learning approach for finding near optimal policy 

 
 Adaptation of common reinforcement learning algorithm for           
solving adaptive sampling problem 

 
Computation of near optimal policy « off-line »   

 
 Design of new policies that outperform simple heuristics and usual RL 
method 

 
 

• Possible application? 
 
 See next presentation ! 





Reconstruction of X(R) and trajectory value 
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• Maximum Posterior Marginal for reconstruction: 
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• Quality of trajectory: 


