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Notation

e x = b(u,r) ... adisc with centre in u € R? and radius r € (0, 00)
e x ={xy,...,x,} ... finite configuration of n discs
e [, ... the union of discs from the configuration x.

e Y ... random disc Boolean model (i.e. union of discs without any
interactions) with an intensity function of discs centers p(u) and
probability distribution of the discs radii ()

e X ... random disc process which is absolutely continuous with re-
spect to the process Y




Assumptions

e The intensity function p(u) = 1 on a bounded set S and p(u) = 0
otherwise, i.e. the centers of the reference Boolean model form unit
Poisson process on S.

e For any finite configuration of discs x = {xy,...,x,}, the proba-
bility measure of X with respect to the probability measure of Y is
given by a density

£(x) _exp{f- T(Ux)}7

Cy

where

— ¢y is the normalizing constant,
— 0 is d-dimensional vector of parameters,

— T =T(Uy) is a d-dimensional vector of geometrical characteris-
tics of the union Uy of the discs from the configuration x.




Quermass-interaction process
The density is of the form

1
folx) = exp{01AU) + 6:L{Us) + sx(Un)},
where
o A= A(Uy) is the area,
e . = L(Uy) is the perimeter,

e \ = x(Uy) is the Euler-Poincaré characteristic (the number of con-
nected components minus the number of holes, i.e.

X(Ux) - Ncc<Ux) - Nh<Ux))

of the union Us.




Extended Quermass-interaction process

Mgller, Helisova (2008):
— In the density

£(x) _exp{f - T(Ux)}7

Cy

we have T'= (A, L, x, Ny, Ny, Niq), where
Ny, = Ny, (Uy) is the number of boundary vertices,
Ny = N;4(Uy) is the number of isolated discs,
of the union Us.
— Theory and simulations studied.

Mgller, Helisova (2010):
—T = (A, L, Nee, Nyp).
— Statistical analysis.




4

5

6

Outline

. Quermass-interaction process and its extension
. Simulation

. Spatio-temporal Quermass-interaction process
. Maximum likelihood method using MCMC

. Particle filtering

. Particle MCMC




Papangelou conditional intensity

Definition For a finite x C S X (0,00) and y € S x (0,00) \ X,
Papangelou conditional intensity is defined as

(%, y) = fo(xU{y})/ fo(x).

Denoting
A(X7 y) :A(Uny) T A<Ux>7
L(X7 y) L(Uny) _ L(Ux)7
X(%,y) =x(Uxuy) — x(Ux),
we get

Ao(X,y) = exp (01 A(x,y) + b2 L(x, y) + O3x(x, y)) -




MCMC algorithm

1. Suppose that in iteration ¢, we have a configuration x; = {z1,...,x,}
2. Proposal in iteration t + 1:
(a) with probability 1/2, the proposal is x; U {1}

i. we accept the proposal with probability min{1; H (x, x,1)}
and set x¢ 1 = X U {7, 1}
ii. else we set X;,1 = X

(b) else, the proposal is x;\{z;}
i. we accept the proposal with probability min{1;1/H (x;\{x;}, =;)
and set x; 1 = X¢\{x;}

i. else X¢11 = X¢

where H(xt, :L‘n+1) = )\9<Xt7 $n+1)n|i+|1

and H (x¢\{z:},z;) = Ae(xt\{xi}vxi)%
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Spatio-temporal Quermass-interaction
process

Zikmundova, Staikova Helisova, Benes (2012):

fa(k)<X) _ eXp{e(k) ) T(Ux>}7

Co(k)

where
o) = gk—1) 4 77('“), k=12...,T,

where 0% fixed is given and n*) are iid random vectors with Gaussian
distribution N'(a,c*I), where a € R (d = 3 for basic Quermass-
interactio process and d = 4,5, 6 for extended versions), 0° > 0 and |
is the unit matrix.




Temporal dependence

is given within its simulation algorithm:

S =

Choose a fixed V)

Simulate parameter vectors 0% k =1,2. ... T.

Simulate a realization x; (using M-H algorithm described above).

Simulate realizations x;, k = 1,2...,T (M-H alg.) with the pro-

posal distribution Prop, of newly added disc at time k& given by
Propy = (1= 8) - Prop™®?) + 8- Prop™, B € (0,1),

where Prop®?) is a distribution of the reference process, Prop!”""

is the empirical distribution obtained from the configuration x;_;
and (3 is a chosen constant.

Remark: Idea is that 3 describs the power of time dependence so that (5 x 100)% of the added

discs are taken from the previous configuration and the remaining discs are simulated randomly, so

the dependence is stronger when [ is bigger.




Example

N

€

S

J eN (
N S = LS
M
@y

A realization of the (A, L, N, Ny)-interaction process in .S = [0, 10] x [0, 10] with @ the uniform
distribution on the interval [0.2,0.7], 80 = (0.5, -0.25, —0.5,0.5), a = (—0.1,0.05,0.1, —0.1),
02 =0.001 and 8 = 0.5 in times k = 0, 1,2 (upper row) and k& = 3, ..., 10 (lower row).
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Maximum likelihood method using
MCMC simulations (MCMC MLE)

e Denote fg(k)(X) = hg(k) (X)/C@(k) (i.e. hg(k) (X) = exp{ﬁ(k) 0 T(UX)} IS
the unnormalized density).

e For an observation x, the log likelihood function is given by

1(OW™)) = log hyw (x) — log cm = 8% - T(Uy) — log cow .

Problem: ¢, has no explicit expression.

Solution: We maximize the likelihood ratio fg(k)/fe(k) for a fixed vector
0

Hék) instead.




MCMC MLE

e For the fixed 6", the log likelihood ratio

1(6W) = 1(85”) = log(hgw () /hyw (%)) — log(cow /cym)

can be approximated by
1(6W) —1(8") = log(hg(x) /g0 (x)) — log — thk) )/ Py (25),

where z; are realizations from f ) (x) obtained by MCMC simula-
0
tions.

e This is applied to the observations in each time .
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Particle filter estimate (PFE)

1. In time k = 0, sample particles 89, i = 1,... m, independently
from a proposal density p(0(©)).

2. For times k=1,...,T

(a) for i = 1,...,m, sample %9 from ¢(6*)|9* 1)) and denote
é(O:k,z’) _ (e(o:k—l,i) é(k,i))

(b) fori=1,...,m, set w;, = fjuy(xz) and normalize them,

90.1{:2 90]4:1

(c) for i = 1,...,m, sample with replacement from

with normalized weights from (b).

3. Filtered estimate is () = Ly, 0T,

Remark: Here, denoting 6,5, the MLE estimate of 0, we set p(H(O)) ~ U/(0, 2@7(3[)6) for 97(31)6 positive
or p(0(0)) ~ U(Qésl)l)e, 0) for éf,gl)e negative, and (A |g(k—10)) ~ N(éﬁ:_l’i) + a,6?), where a, 5

le

are obtained by standard linear regression methods from MLE estimates.




Comparing MCMC MLE and PFE
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Comparing the real parameters (solid line) with envelopes (dotted lines) and averages (dashed lines)
of estimates obtained from 39 realizations of the process by MCMC MLE (left) and PFE (right).




Comparing MCMC MLE and PFE
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Comparing the real parameters (solid line) with envelopes (dotted lines) and averages (dashed lines)
of estimates obtained from 39 realizations of the process by MCMC MLE (left) and PFE (right).




Comparing MCMC MLE and PFE

e MCMC MLE seems to be better in average in later times

e PFE has smaller variance

!

Possible reason: small number of components and number of holes
in earlier and later times, respectively.

!

Next steps:
e Application to Quermass-interaction process

e Consider longer time sequence

e Try also particle MCMC




4

5

6

Outline

. Quermass-interaction process and its extension
. Simulation

. Spatio-temporal Quermass-interaction process
. Maximum likelihood method using MCMC

. Particle filtering

. Particle MCMC




Particle MCMC

e Idea: Particle filter running in more iterations.
e Algorithm:

1. lteration 0:
(a) Set (0(0), a(0), 5%(0)) arbitrarily (e.g. ML estimates).
(b) Using steps 2 and 3 from PFE algorithm, obtain 6*7)(0).
2. lteration ¢ + 1:
(a) Given (00(t), a(t), o(t)), propose (0% a*,o%) (e.g. ran-
dom walk).
(b) Using steps 2 and 3 from PFE algorithm, obtain §(*7)*,
(c) Accept this proposal (i.e. set (0V(t+1),a(t+1),0%(t+1)) =
(0% a*, 0*)) with probability min(1; M H), where M H is
Metropolis-Hastings ratio.




Metropolis-Hastings ratio in particle
MCMC

i pl(e(O)*’ CL*, 02*)
p(0O@F —1),a(t —1),02(t — 1))

 p(0°(1), a(t), ()| (69", a*, 0*))
(007, a*, 02| (6)(2), a(t), o*(1)))

e w;
[T, @i’

where @, = £ 377" fyus(x;) and analogously wy = = 377" fowa(Xy)
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Application

Katefina
Stankova
Helisova

Estimating

interaction
process

A realization of the Quermass-interaction process in S = [0,10] x [0,10] with @ the uniform
distribution on the interval [0.2,0.7], 8 = (1,-0.5,—1), a = (=0.1,0.05,0.1), ¢ = 0.001 and
f =0.5in times k = 0,5, 10 (upper row) and k = 15,20, 25 (lower row).




Comparing all three methods
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Comparing the real parameters (black line) with envelopes obtained from 19 realizations of the

process by MCMC MLE (red lines) and PFE (blue lines) and PMCMC (green lines).




Comparing all three methods
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Comparing the real parameters (black line) with envelopes obtained from 19 realizations of the
process by MCMC MLE (red lines) and PFE (blue lines) and PMCMC (green lines).




Comparing all three methods
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Comparing the real parameters (black line) with envelopes obtained from 19 realizations of the
process by MCMC MLE (red lines) and PFE (blue lines) and PMCMC (green lines).
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Thank you for your attention!




	Outline
	Outline
	Notation
	Assumptions
	Quermass-interaction process
	Extended Quermass-interaction process
	Outline
	Papangelou conditional intensity
	MCMC algorithm
	Outline
	Spatio-temporal Quermass-interaction process
	Temporal dependence
	Example
	Outline
	Maximum likelihood method using MCMC simulations (MCMC MLE)
	MCMC MLE
	Outline
	Particle filter estimate (PFE)
	Comparing MCMC MLE and PFE
	Comparing MCMC MLE and PFE
	Comparing MCMC MLE and PFE
	Outline
	Particle MCMC
	Metropolis-Hastings ratio in particle MCMC
	Application
	Comparing all three methods
	Comparing all three methods
	Comparing all three methods
	References
	

