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General framework

» Consider discrete events : Ac A= {Ay,..., Ak} = A.

» We know conditional probabilities P(A | D;) = P;(A), where the
D;s come from different sources of information.
» We include the possibility of a prior probability, Py(A) .
» Example :
» A = soil type

» (D;) = {remote sensing information, soil samples, a priori
pattern,...}
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Purpose

To provide an approximation of the probability P(A | Dy, ..., D,) on
the basis of the simultaneous knowledge of Py(A) and the n
conditional probabilities P(A | D;) = P;(A), without the knowledge of a
joint model :

P(A|Dy,...,Dn) = Pg(P(A|Dy), ..., P(AlDp)). (1)
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Some mathematical properties

Convexity
An aggregation operator Pg verifying

Pg € [min{Px, ..., Pp}, max{Ps,

is convex.

ooy P},
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Some mathematical properties

Convexity
An aggregation operator Pg verifying

Pg € [min{Py,..., Py}, max{P,..., Py}, 2)
is convex.
Unanimity preservation

An aggregation operator Pg verifying Pg = p when P; = p for
i=1,...,nis said to preserve unanimity.

Convexity implies unanimity preservation.

In general, convexity is not necessarily a desirable property.
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Some mathematical properties

External Bayesianity
An aggregation operator is said to be external Bayesian if the
operation of updating the probabilities with the likelihood L commutes

with the aggregation operator, that is if
Pa(Pr, ..., P5)(A) = P5(Py, ..., Po)(A). (3)
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Some mathematical properties

External Bayesianity

An aggregation operator is said to be external Bayesian if the
operation of updating the probabilities with the likelihood L commutes

with the aggregation operator, that is if

Pa(Pr, ..., P5)(A) = P5(Py, ..., Po)(A). (3)

» |t should not matter whether new information arrives before or
after pooling

» Equivalent to the weak likelihood ratio property in Bordley (1982).

» Very compelling property, both from a theoretical point of view
and from an algorithmic point of view.

Imposing this property leads to a very specific class of pooling
operators.



Some mathematical properties

0/1 forcing
An aggregation operator which returns Pg(A) = 0 if P;(A) = 0 for
some i =1,...,nis said to enforce a certainty effect, a property also

called the 0/1 forcing property.



Linear pooling

Linear Pooling

where the w; are positive weights verifying >°7" ; w; = 1

» Convex = preserves unanimity.
» Neither verify external bayesianity, nor 0/1 forcing
» Cannot achieve calibration (Ranjan and Geniting, 2010).

Ranjan and Gneiting (2010) proposed a Beta transformation of the
linear pooling. Parameters are estimated via ML.



Log-linear pooling

Log-linear pooling
A log-linear pooling operator is a linear operator of the logarithms of
the probabilities :

n
In Pg(A) =InZ + " w;In P(A), (5)
i=0
or equivalently
n
Pa(A) o [ ] Pi(A)"™, (6)
i=0

where Z is a normalizing constant.

» Non Convex but preserves unanimity if >-" , = 1
» Verifies 0/1 forcing
» Verifies external bayesianity (Genest and Zidek, 1986)



Generalized log-linear pooling

Theorem (Genest and Zidek, 1986)

The only pooling operator Pz depending explicitly on A and verifying
external Bayesianity is

Pa(A) o v(A)Po(A)' =5 T Pi(A)™. 7)
i=1

No restriction on the w;s ; verifies external Bayesianity and 0/1 forcing.



Generalized log-linear pooling

Pa(A) o v(A)Po(A)' =5 T Pi(A)™. (8)
i=1

The sum Sy = >, w; plays an important role.
Suppose that P, = pforeachi=1,... n.

» If Sy = 1, the prior probability P, is filtered out. Then, Pg = p
and unanimity is preserved

» if Sy > 1, the prior probability has a negative weight and Pg will
always be further from Py than p

» Sw < 1, the converse holds



Maximum entropy approach

Proposition

The pooling formula Pg maximizing the entropy subject to the
following univariate and bivariate constraints Pg(P)(A) = Po(A) and
PG(P07 P,)(A) = P(A ‘ D,) for i = 1,...,n is

_ Py(A) I Pi(A)
2 acA PO(A)1_"H7:1 PI(A)'

Pg(Py, ..., Pn)(A) (9)

i.e. itis a log-linear formula with w; = 1, forall i =1, ..., n. Proposed
in Allard (2011) for non parametric spatial prediction of soil type
categories.

{Max. Ent.} C {Log linear pooling} < {Gen. log-linear pooling}.
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Maximum Entropy for spatial prediction
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Maximum Entropy for spatial prediction
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Maximum Entropy for spatial prediction
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Estimating the weights

Maximum entropy is parameter free. For all other models, how do we
estimate the parameters ?

We will minimize scores
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Estimating the weights

Maximum entropy is parameter free. For all other models, how do we
estimate the parameters ?

We will minimize scores

Quadratic or Brier score
The quadratic or Brier score (Brier, 1950) is defined by

S(Pg, Ax) = Z (0% — Palj))? (10)
j=1

Minimizing Brier score < minimizing Euclidien distance.



Estimating the weights

Maximum entropy is parameter free. For all other models, how do we
estimate the parameters ?

We will minimize scores

Quadratic or Brier score
The quadratic or Brier score (Brier, 1950) is defined by

S(Pg, Ax) = Z (0% — Palj))? (10)
j=1

Minimizing Brier score < minimizing Euclidien distance.

Logarithmic score
The logarithmic score corresponds to

S(Pg, Ax) = In Pg(k) (11)

Maximizing the logarithmic score < minimizing KL distance.



Maximum likelihood estimation

Maximizing the logarithmic score < maximizing the log-likelihood.

Let is consider M repetitions of a random experiment. For
m=1,....M:

> conditional probabilities P™ (A)
» aggregated probabilities Pg”)(Ak)

» Y™ — 1 if the outcome is Ax and Y{™ = 0 otherwise

n

M n
Lww) = Y Sy {myk +(1 =Y w)InPok+ > win Pffk”)}

i=1 i=1

M K n
-3 In {Z v Py " H(P,{?)W'} : (12)



Calibration

Calibration
The aggregated probability Pg(A) is said to be calibrated if

P(Yx | Pa(Ak)) = Pa(Ak), k=1,....K

(13)
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Calibration

Calibration
The aggregated probability Pg(A) is said to be calibrated if

P(Yx | Pa(Ak)) = Pa(Ak), k=1,....K (13)

Theorem (Ranjan and Gneiting, 2010)
Linear pooling cannot be calibrated.

Theorem (Allard et al., 2012)

If there exists a calibrated log-linear pooling, it is, asymptotically, the
(generalized) log-linear pooling with parameters estimated from
maximum likelihood.



Measure of calibration and sharpness

Recall Brier score

1 K M
= & {Z (PI(A m>)2} : (14)

k=1 m=1

It can be decomposed in the following way :

BS = calibration term + sharpness term + Cte

» Calibration must be close to 0

» Conditional on calibration, sharpness must be as high as
possible
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First experiment : truncated Gaussian vector

One prediction point sy

Three data s1, sp, s3 defined by distances d; and angles 0;
Random function X(s) with exp. cov, parameter 1

D; = {X(s;)) <t}

A={X(s)) <t—1.35}

10,000 simulated thresholds so that P(A) is almost uniformly
sampled in (0, 1)
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Firstcase :di =db = dz; 01 = 0> = 05

Weight Param. —Loglik BIC BS CALIB  SHARP
Py — — 5782.2 0.1943  0.0019 0.0573
P2 = = 5686.8 0.1939  0.0006 0.0574
Pi23 = = 5650.0 0.1935 0.0007  0.0569
Lin. = = 5782.2 11564.4  0.1943  0.0019 0.0573
BLP = a = 0.67 5704.7 11418.7 0.1932 0.0006  0.0570
ME = = 5720.1 11440.2  0.1974  0.0042 0.0564
Log.lin. 0.75 = 5651.4 113120 0.1931 0.0006  0.0571

Gen. Log.lin. 0.71 v =1.03 5650.0 11318.3  0.1937  0.0008  0.0568

Linear pooling very poor ; Beta transformation is an improvement
Gen. Log. Lin : highest likelihood, but marginally

Log linear pooling : lowest BIC and Brier Score

Note that S,, = 2.25
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Second case : (dj, db,03) = (0.8,1,1.2); 61 =602 =03

Weight Param. —Loglik BIC BS CALIB  SHARP
Py — — 5786.6 0.1943 0.0022  0.0575
P2 — — 5730.8 0.1927  0.0007  0.0577
Pio3 — — 5641.4 0.1928  0.0009  0.0579
Lin.eq (1/3,1/3,1/3) — 5757.2 11514.4  0.1940 0.0018  0.0575
Lin. (1,0,0) — 5727.2 11482.0 0.1935 0.0015 0.0577
BLP (1,0,0) a=0.66 56805 11397.8  0.1921  0.0004  0.0580
ME — — 5727.7 11455.4 0.1972 0.0046 0.0571
Log.lin.eq. (0.72,0.72,0.72) — 5646.1 11301.4 0.1928 0.0006  0.0576
Log.lin. (1.87,0,0) — 5645.3 11318.3 0.1928 0.0007  0.0576
Gen. Log.lin. (1.28,0.53, 0) v =1.04 5643.1 11323.0 0.1930 0.0010  0.0576

» Optimal solution gives 100% weight to closest point

» BLP : lowest Brier score

» Log. linear pooling : lowest BIC ; almost calibrated
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Second experiment : Boolean model

v

Boolean model of spheres in 3D
A= {sp € void}

2 data points in horizontal plane + 2 data points in vertical plane
conditional probabilities are easily computed

Uniformly located in squares around prediction point
50,000 repetitions
P(A) sampled in (0.05,0.95)

v
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Second experiment : Boolean model

Weights Param. — Loglik BIC BS CALIB  SHARP
Py — — 29859.1  59718.2 0.1981  0.0155 0.0479
P; = = 16042.0 32084.0 0.0892 0.0120 0.1532
Lin. ~ 0.25 = 14443.3 289299 0.0774  0.0206 0.1736
BLP ~ 0.25 (3.64,4.91) 9690.4 194457 0.0575 0.0008 0.1737
ME = = 7497.3 149946 0.0433 0.0019 0.1889
Log.lin ~ 0.80 = 7178.0 14399.3 0.0416 0.0010 0.1897
Gen. Log.lin. ~ 0.79 v =1.04 7172.9 14399.9 0.0417  0.0011 0.1898

» Log. lin best scores.
» Gen. Log. lin has marginally higher liklihood, but BIC is larger
» BS is significantly lower for Log. lin. than for BLP



Conclusions

New paradigm for spatial prediction of categorical variables :
use multiplication of probabilities instead of addition.

» Demonstrated the usefulness of lig-linear pooling formula
» Optimality for parameters estimated by ML

» Very good performances on tested situations

» QOutperforms BLP in some situations

To do
Implement Log-linear pooling for spatial prediction. Expected to
outperform ME.
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