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Motivation

Observations and Climate Models

@ Observations:

e provide a corroborating source of information about physical
processes being modeled.
e have methodological and practical issues due to uncertainties.

e Climate Models:
e numerically solve systems of differential equations representing
physical relationships in the climate system.
e have huge uncertainties and biases.
@ Scientific Questions:

e How do we compare sources of variability in observations or
climate model outputs? i.e. quantification of uncertainties?
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Spatio-Temporal Precipitation Data

@ Spatio-temporal precipitation data: annual total precipitation
data for U.S. from 1895 to 1997 at 11,918 weather stations.

@ Nine climatic regions for precipitation defined by National
Climatic Data Center.

@ Several areas of outliers detected by Sun and Genton (2011,
2012).




Univariate ANOVA

Analysis of Variance

@ Analysis of Variance (ANOVA):
e An important technique for analyzing the effect of categorical
factors on a response.
e It decomposes the variability in the response variable among
the different factors.
o A two-way additive model: for i=1,...,r,j=1,...,c,
Yii = 1+ o+ 5 + €.

@ The ANOVA model can be fitted by arithmetic means (no
outliers), or medians (robust).
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Univariate ANOVA

ANOVA Model Fitting

o Fitted by means:

o (i =y (grand effect),

o &; =Y —y (row effect),

o 3;=y,—y (column effect).
o Fitted by medians:

o Median polish (Tukey, 1970, 1977).

e An iterative technique for extracting row and column effects in
a two-way table using medians rather than means.

e It stops when no more changes occur in the row and column
effects, or changes are sufficiently small.
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Median Polish Example

@ Original table: find row medians.

@ 1st iteration: subtract row medians, find column medians. Grand median
in red, row effects in blue, column effects in green.

© 2nd iteration: subtract column medians, find row medians,

6 3 116
3 2 4|3
9 0 0|0

@ subtract new row medians,

column medians.

—

0 -3 56 0 -2 4]0
0 -1 113 0 0 010
9000_’91—11
0 -1 173 0 -1 \0\\3

add their medians to the grand median, find

@ Polished table: new row and column medians are zero after two iterations.

0 =2 4 3 0 -2 4 3
00 0 0
00 0| o0
8§ 0 -2 -3 - 8 0 2| -3
00 0 0 3
3+0




Functional Median Polish

Observe functional data at each combination of two
categorical factors.

Examine their effects: functional row or column effects.
Yijk(x) = pu(x) + ai(x) + Bj(x) + €jk(x), where
i=1,....,r,j=1...,¢c, k=1,...,mj.

Constraints: median;{c;(x)} = 0, median;{3;(x)} =0 and
median;{eji(x)} = median;{eji(x)} = 0 for all k.

x can be time for curves or spatial index for surfaces/images.
Iterative procedure sweeping out column and row medians.
One-way functional ANOVA can be done in a similar way.

Need to order functional data.



Functional ANOVA

Multivariate Ordering

@ Basic ideas of depth in functional context
e provides a method to order sample curves according to
decreasing depth values,
o yq): the deepest (most central or median) curve,
® ¥[s: the most outlying (least representative) curve,
® yj,---,Y[n: start from the center outwards.

@ Usual order statistics: ordered from the smallest sample value
to the largest.
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Band Depth for Functional Data

e Loépez-Pintado and Romo (2009) introduced the band depth
(BD) concept through a graph-based approach.

@ Grey area: band determined by two curves, y; and ys.

o Contains the curve y», but does not contain yj.

o Y2

ﬂ
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Functional ANOVA

Band Depth for Functional Data

e Population version of BD(2):

BD@(y, P) = P{G(y) C B(Y1, Y2)}.

e G(y): graph of the curve y,
o B(Yi1, Y2): band delimited by 2 random curves.

@ The band could be delimited by more than 2 random curves,

J
j=2
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Functional ANOVA

Sample Band Depth

o Population level: BDU)(y, P) is a probability.
@ Sample version of BDU)(y, P)

i n -1
BD0(y) - () ST ) C B i)

J 1< <i<..<ij<n

o /{-}: the indicator function,
e fraction of the bands completely containing the curve y.

e Sample BD: BD,, (y) = Zfzz BDr(rj)()’)-
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Functional ANOVA

Modified Band Depth

@ Loépez-Pintado and Romo (2009) also proposed a more flexible
definition, the modified band depth (MBD).

. n -1
DY) (y) = () S H{GW) € B -y,

J 1<ii<ih<...<ij<n

-1
'.’) S A ).

J 1< <i<...<ij<n

MBDY(y) = (

© M A{A(Y; Yi,---¥i;)} measures the proportion of time that a
curve y is in the band.
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Sea Surface Temperature

Functional Boxplots (Sun and Genton, 2011, 2012)
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Simulation Studies

True Model

@ Generate data from a true model with r =2, ¢ =3, and
m = 100 curves in each cell at p = 50 time points.

True Grand Effect True Row Effect True Column Effect
o o
& H &
o £ o R
H z ° ]
g & 2
o o
2 |
=
; ; ; ; ; ; : ; ; ; ; : ; : : : : :
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

@ Introduce outliers through a Gaussian process €;jc(t).
@ Replications: 1,000.
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Outlier Models

e Model 1: € (t) = ejik(t), where ej(t) ~ GP(0,~) with
V(t1, t2) = exp{—[t2 — t1[}.

o Model 2: € (t) = ejj(t) + cijjk K, where cjj is 1 with prob gj;
and 0 with prob 1 — gj;, gj; is different for each cell.

@ Model 3: E;J'k(t) = e,-jk(t) + C,'ij, if t > Tijk and
Gijk(t) = e,-J-k(t), if t < Tijkv where T,'J'k ~ U(O, 1).

Model 1 Model 2 Model 3
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Column Effect 1
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Simulations: Model 2
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Column Effect 1
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Simulations: Model 2
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Simulations: Model 3
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Spatio-Temporal Precipitation Data

@ Spatio-temporal precipitation data: annual total precipitation
data for U.S. from 1895 to 1997 at 11,918 weather stations.

@ Nine climatic regions for precipitation defined by National
Climatic Data Center.

@ Several areas of outliers detected by Sun and Genton (2011,
2012).




Functional Boxplots for Nine Climatic Regions
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Climatic Region Effects

Weather Station (Median) Weather Station (Mean)
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Weather Station and GCM Effects
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UK and Ireland Temperatures

@ Regional Climate Model (RCM): has higher resolution, covers
a limited area of the globe.

@ The boundaries of RCM are driven by variables output from a
global climate model (GCM).
@ Question: how much variability in the model output is from

RCM and how much is due to the boundary conditions from
GCM.

e Functional ANOVA: Kaufman and Sain (2010) proposed a
mean-based Bayesian framework for spatial data.

e Data: PRUDENCE project (Christensen, Carter, and Giorgi
2002), consists of control runs (1961-1990).

e Two factors: RCM (HIRHAM and RCAO), GCM (ECHAM4
and HadAm3H).



Grand Effect and Residuals
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GCM and RCM Effects

Control GCM: ECHAM4 (Median) Control GCM: HadAM3H (Median)
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Discussion

Discussion

@ Functional Median Polish: robust functional ANOVA fitted by
functional median.

@ Band depth: graph-based nonparametric ordering for
functional /image data (e.g. median image).

@ The functional median polish algorithm does not guarantee to
yield the least Li-norm residuals.

o Fink (1988) proposed a rather complex modification of the
classical procedure that converges to the least Li-norm
residuals.
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